Further Advances in DNA Amplification for PGT

Charles Gawad, MD, PhD Associate Professor of Pediatrics, Stanford Co-Founder, BioSkryb Genomics

Opportunities for PGT Innovation

- Sample Collection
- Sample Identification
- Nucleic Acid Amplification
- Sequencing
- Analyses
- Results Interpretation

Overview of WGA Strategies

(Gawad et al Nature Reviews Genetics 2016)

Limitations of Previous Single-Cell WGA Methods

- Poor whole genome amplification uniformity and/or coverage
- Low single nucleotide variant detection sensitivity
- Introduction of false positive variant calls leading to poor precision
- Lack reproducibility between cells/samples

Primary Template-Directed Amplification (PTA)

Primary Template-Directed Amplification (PTA)

Primary Template-Directed Amplification (PTA)

PTA Kinetics Are Quasilinear

Genome Coverage at Increasing Sequencing Depth

MDA (the Current Gold Standard)

PTA

Accuracy of Single Cell SNV Calling with PTA

(Gonzalez, V.... Gawad, C PNAS 2021)

Mean Coverage of Mitochondrial Genome

Can We Establish Improved PTA Performance on the Number of Cells that are Relevant to PGT?

Need to control for:
–Phase of cell cycle
–Number of input cells

How Does Cell Cycle Alter the Performance of PTA?

S Phase Does Reduce Amplification Uniformity

Increasing Number of Input Genomes from S/G2 Phase Slightly Increases Variant Calling Accuracy

Controlling for Number of Input Cells

Amplification Uniformity with Increasing Cell Numbers

Quantifying Amplification Uniformity

Translating These into Variant Calling Accuracy

Do These Findings Translate to TE Biopsies?

Yuntao Xi, PhD Postdoc, Gawad lab

Veronica Gonzalez-Pena, PhD Staff Scientist, Gawad lab

Barry Behr, PhD Obstetrics & Gynecology Professor, Embryology Laboratory Director, Stanford

Proof-of-Concept Study Overview

Genome Coverage

Measurements of Genome Uniformity

Coverage of the Mitochondrial Genome

Diploid Copy Number Profile

Aneuploid CNV Profile

Mosaic CNV Profile

Quantifying Mosaicism with the Improved Uniformity of PTA

Single Nucleotide Variant Calling Accuracy

Identification of Low and High Frequency Heteroplasmy

Screening for Known Mendelian Diseases and *de novo* Variants

All de novo variants flagged during variant interpretation

Al to Help Interpret Variants of Uncertain Significance

RESEARCH ARTICLE SUMMARY

MACHINE LEARNING

Accurate proteome-wide missense variant effect prediction with AlphaMissense

Jun Cheng*, Guido Novati, Joshua Pan†, Clare Bycroft†, Akvilė Žemgulytė†, Taylor Applebaum†, Alexander Pritzel, Lai Hong Wong, Michal Zielinski, Tobias Sargeant, Rosalia G. Schneider, Andrew W. Senior, John Jumper, Demis Hassabis, Pushmeet Kohli*, Žiga Avsec*

What About niPGT with PTA?

- The Challenge
 - Low and variable quantity of DNA
 - cfDNA is fragmented
- Need to rethink general approach to get more robust results
- We hope to have more to report soon

Lower Sequencing Costs Will Make Whole Genome PGT Financially Feasible

- Improved data quality reduces amount of sequencing required
 - Lower error rates
 - Longer reads
 - Shorter run times
- Lower consumable costs
 - Currently \$100 per genome
 - Plans to go much lower in the near future

Conclusions

- PTA shows improved amplification performance and variant calling accuracy at all cell input numbers relevant to PGT
- PTA has exceptionally accurate variant calling of mitochondrial variants
- Whole genome PGT is feasible with PTA, including screening for *de novo* variants
- niPGT with PTA is possible, but additional technical barriers need to be overcome