

PGDIS CONFERENCE Kuala Lumpur Malaysia

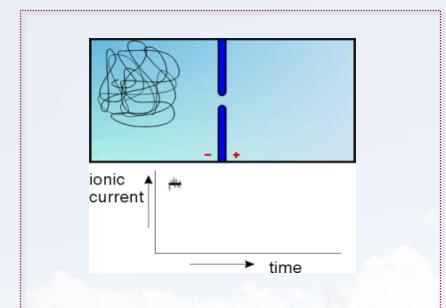
6-8 May 2024

PGT and BEYOND...

Rapid, efficient,
decentralized PGT-A
with Oxford Nanopore
Sequencing

Cheng Wan

8th, May, 2024

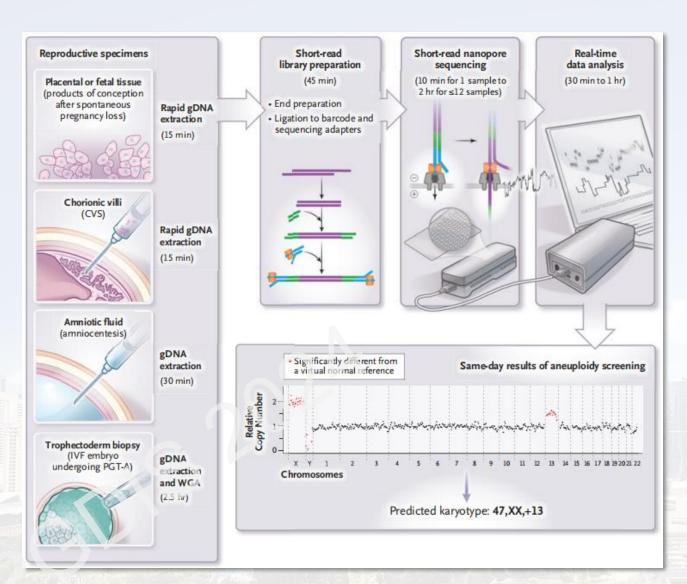

Full-time employee, R&D director of Yikon Genomics

Nanopore Sequencing: principle and technical advantages

Principle

- Coulter counter
- Base recognition based on current resistive pulse signal

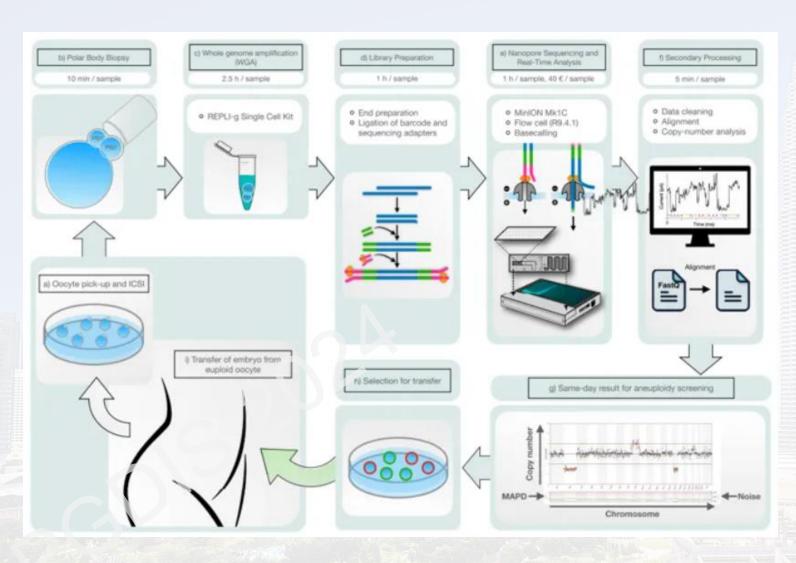
Technical characteristics


- **Long-read sequencing**, realizing the detection of various mutations and direct construction of haplotypes, without the need for probands
- Real-time basecalling. The unique adaptive sequencing enables flexible customization of panels without the need for primers. Significantly reduce sequencing costs through sample mixing
- Single-molecule sequencing. No PCR required
- Portable, and cheap equipment

Technical workflow

Advantages

- **Ultrafast** (Fresh embryo transfer on the same day)
- Easy operation
- Small and cheap equipment
- **Flexible and expandable** (Resolution selectable, suitable for MaReCs, PGT-M, and niPGT-A)


45+

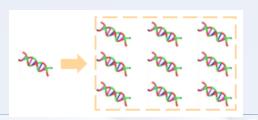
Publications

Comparative experimental study

Polar Bodies PGT-A with ONT platform

Informative rate (QC pass)	97.1% (99/102)		
Concordance (vs aCGH)	97.0% (96/99)		
Sensitivity	0.957		
Specificity	1		
PPV	1		
NPV	0.906		

PPV: positive predictive value NPV: negative predictive value


Oberle A, Hanzer F, et al. Clin Chem. 2024;70(5):747-758.

Ultra-fast PGT-A with ONT: 12 samples in 5 hours

Embryo biopsy

WGA

Library construction

Nanopore Sequencing

Data analysis

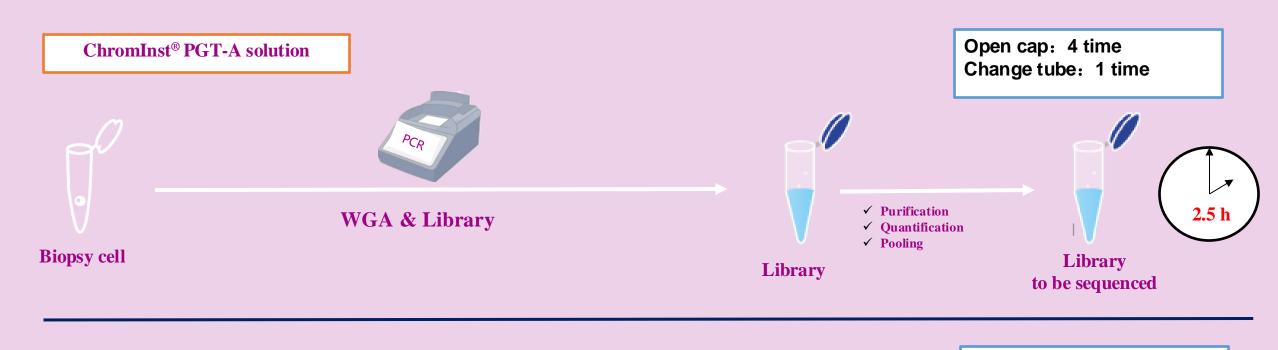
Biopsy TE cells from blastocyst

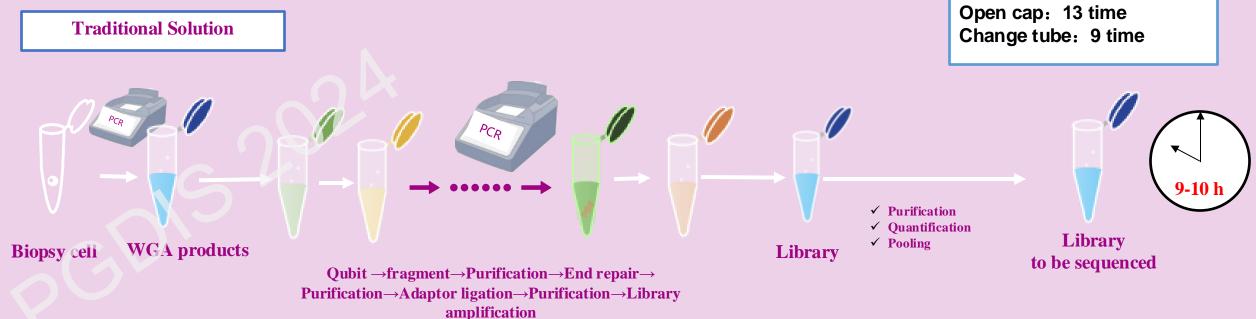
Whole-genome amplification based on **ChromIast**

Prepare library with the Ligation Sequencing Kit V14

Perform sequencing with P2 solo and R10 flow cell

Analyze data and output report using **ChromGo**


3hr


0.5hr

1hr

0.5hr

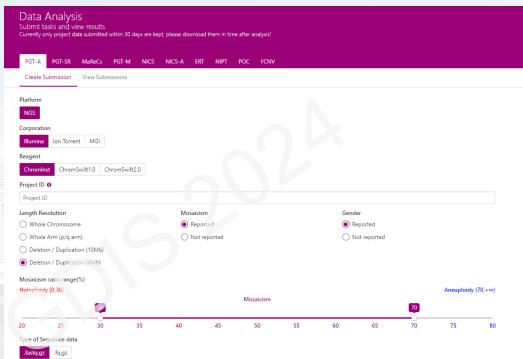
5hr in total

P2 Solo: Flexible, high-yield nanopore sequencing for every lab

Choose PromethION2 Solo (P2 Solo) devices for flexible, high-yield sequencing, in a compact, accessible design. Utilising flow cells that generate hundreds of gigabases, enable PromethION-scale benefits in labs. Suitable for users with various sample processing requirements, up to ~250 flow cells per year.

- Two high-yield flow cells, delivering up to 400 Gb of data
- Flexible, on-demand sequencing. Run flow cells individually or together

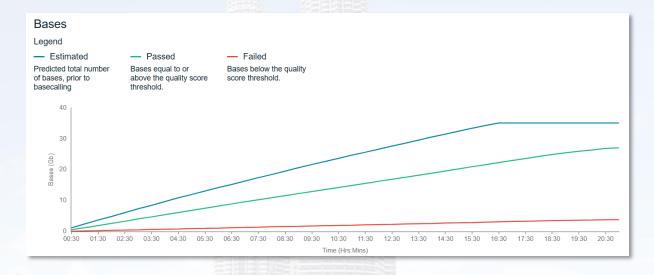
Flow cell Specifications

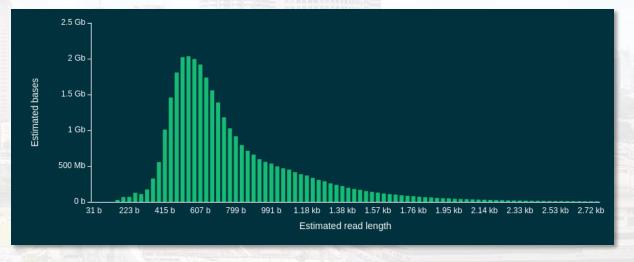

- **100-200 Gb native gDNA reads** (read N50 ~20 kb)
- >100 million cDNA reads for isoform-level analysis
- Multiplexed sequencing of up to 96 samples with PCR or PCR-free barcoding
- Reusable for up to 7 times.

PGDIS Date analysis-ChromGoTM

User friendly genome analytical platform

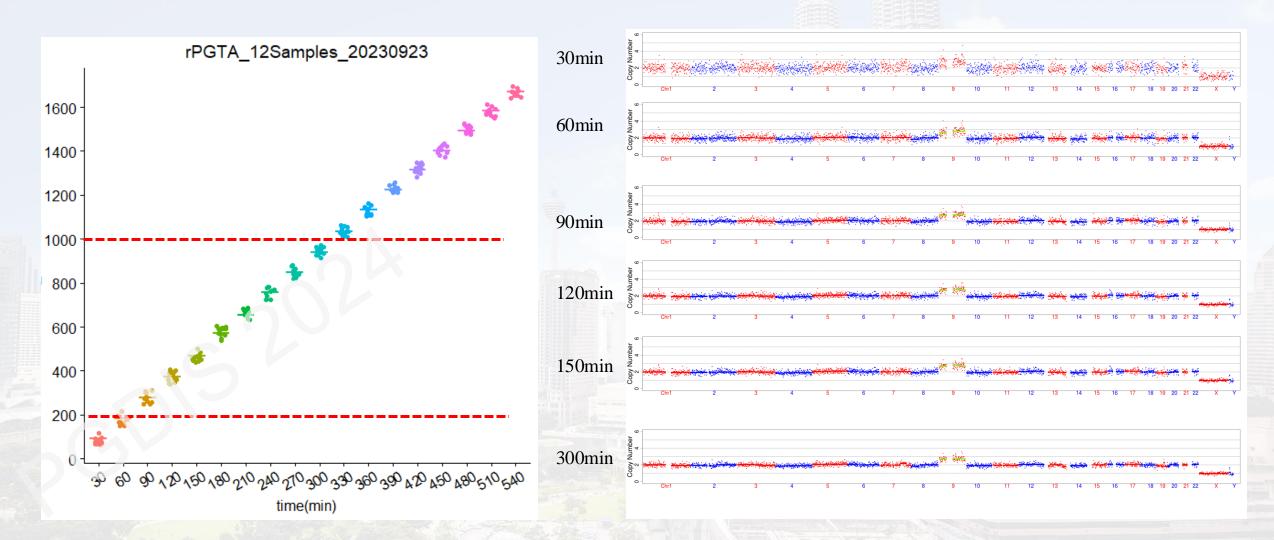
- Fully Integrated: Analytic platform for PGT-A/-M/-SR/ERT/NICS/POC/FCNV, etc
- Sufficient data verification has been completed to ensure the accuracy of the results.
- More than 100,000+ samples per year.




Experimental results

- Aneuploidy screening is performed using P2 solo with short fragment mode (SFM).
- WGA products of 12 embryo samples are mixed and sequenced on the same flow cell.

Barcode	CNV information(NGS)	Gender
01	+15	XX
02	dup(3)(p26.3p11.1)(~88.40Mb,~54%)	XY
03	+1(~54%),dup(4)(q31.22q35.2)(~44.00Mb,~51%),-12(~44%),-13(~38%),-18(~45%)	XY
04	46, XN	XY
05	46, XN	XX
06	46, XN	XY
07	+9	XY
08	46, XN	XX
09	+21	XY
10	-21	XY
	+13,dup(16)(p13.3p11.2)(~32.00Mb),dup(16)(p11.2q24.3)(~58.55Mb,~50%)	XY
12	+18	XY



Experimental results

- The resolution continues to improve as the sequencing time increase.
- ~200k valid reads (300K raw reads)/1 h meets the demand for 10Mb resolution.

PGDIS Validation results

Clinical Samples

Platform	Karyotype	Number	Examples		
P2 solo	Euploid	32	46,XN		
	Aneuploid	10	+15		
	Micro deletion/micro duplication	27	dup(3)(p12.2p12.1)(~5.00Mb)		
	Mosaic	17	-2(~34%)		
Total		86			

Enterprise Reference Samples

Enterprise Reference	Karyotype	Number	Examples		
N series	Negative control (Euploid)	5	46,XN		
D series	Micro deletion/micro duplication	29	del(2)(q24.2q31.1)(~8.60Mb)		
M series	Mosaic	4	del(5)(p15.33p13.3)(~29.80Mb,~65%),du p(5)(p13.3p13.2)(~4.60Mb)		
P series	Positive control (Aneuploid)	6	+2		
Total		44			

Consistency criteria	Data volume	Number of consistent results	Consistency rate	Sensitivity	Specificity
There is a difference in chimerism ratio or a difference in CNV length detected, but the trend of copy number is consistent	0.5M	126	96%	96.3%	98.0%
	0.4M	128	98%	97.5%	100%
	0.3M	128	98%	97.5%	100%
	0.2M	126	96%	95.2%	100%
	0.1M	125	95%	94.0%	100%

Features and benefits

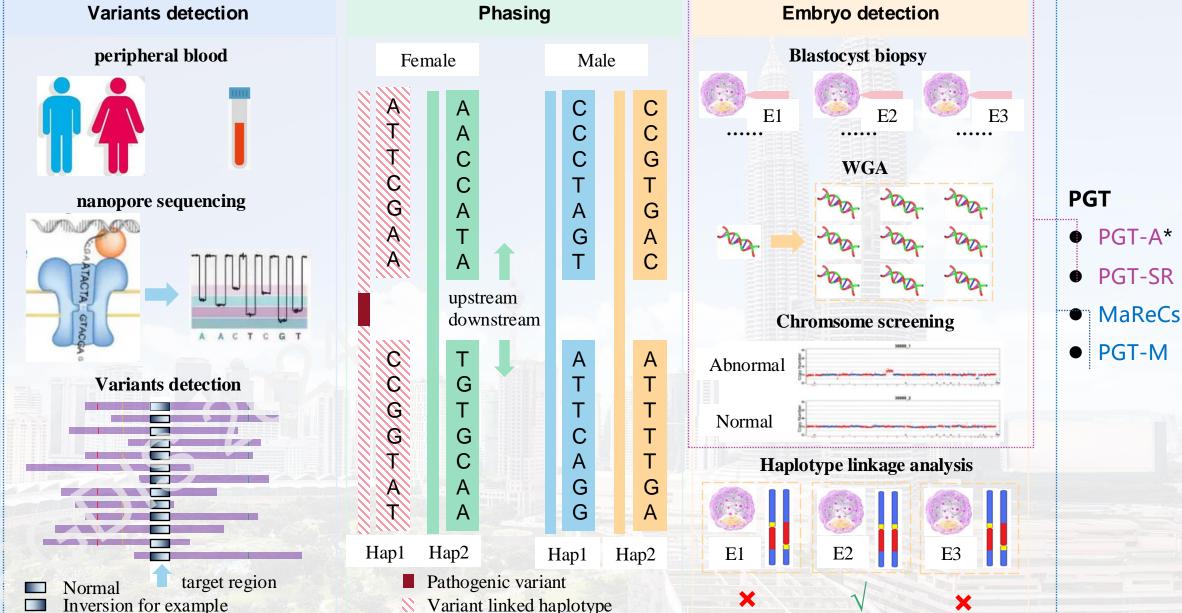
- CNV resolution
 - 300k raw reads for 10Mb
 - 1M raw reads for 4Mb
- Mosaic detection

30%~70%

Adjustable according to user needs

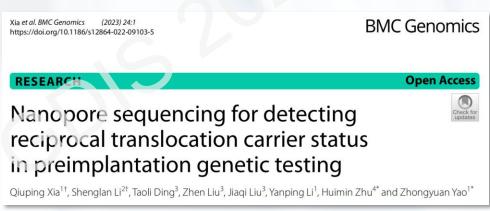
- Detection success rate
 - >98%
- Turnaround time (TAT)

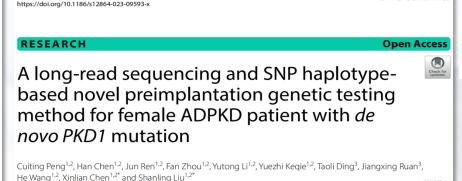
5 hours for 12 samples


- 48 hours for 96 samples
- Equipment investment

<1/2 of NGS-based PGT lab

ONT-based PGT: developing plan




Yikon Genomics: a TGS service provider

- Starting from January 2022, Yikon Genomics provides ONT based PGT products to the public. Currently, direct haplotyping with ONT for PGT-M has been used in 200+ clinical families;
- Yikon has established cooperation relationship with 15+ hospitals, with a total of 25 research projects. Completed TGS of 67 scientific research samples;

Peng et al. BMC Genomics (2023) 24:521

- 3 articles have been accepted and 6 articles are being submitted. Generate 2 cooperative patents;
- An ONT database containing over 200 Chinese population has been set up;
- Yikon Genomics is an official OEM partner of Oxford nanopore technology (ONT);
- Yikon Genomics is the largest TGS service provider in China and even the world in reproductive health.

BMC Genomics

