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Genome editing

UNIVERSITY OF

OXFORD

 Genome editing (GE) harnesses programmable nucleases to modify genetic
Information in a targeted manner
1. Possibility of correcting disease-causing mutations in the germline

2. Enhaince the understanding of cellular mechanisms taking place
during the first days post-fertilization.



Genome editing revolutionised by the CRISPR-Cas9 system
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Genome editing reveals a role for OCT4
in human embryogenesis
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nature » Potential for repair as well as disruption

do0i:10.1038/nature23305 Of genes (Ma et al.’ 2017)

Corr e(,:tIOI:l ¢ nature communications « Remove and replace spetific pieces of
mutation in
Tomenari Hayamal, Riffat Almect, 1 DNA (via homology directed repair)

Sang-Tae Kim2, Jianhui Gong>¢7-8, vi, Article https://doi.org/10.1038/s41457-023-36820-6
Don P. Wolf!, Stephen B. Heitner'?, Jua
Shoukhrat Mitalipov'°§

Limitations of gene editing assessments in
h"“nan prelmplantatlon embwgﬁf heterozygosity (many embryos

Liang et al. 2023 homozygous for normal gene copy)
« Attributed to HDR using the normal copy

of the gene



Clinical Application...how far are we in terms of technology?
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For clinical application to be considered:

1. Rate of HDR must be increased (normally <10%)

2. There must be no unintentional alterations of the genome and

(sub)chromosomal aberrations

3. Methodology for gene editing assessment must be unified



What can CRISPR tell us about embryo biology?
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1. How do early human embryos resolve DNA damage?
2. Are cellular repair mechanisms fully functional prior to embryonic genome activation (EGA)?

3. Isthere a risk that the therapeutic use of CRISPR-Cas9 to correct mutations could produce

damage that embryonic cells fail to repair?

Repair pathways are compromised in the early human embryos prior to the EGA and the

application of GE at this stage induces genomic instability

The study harnessed CRISPR-Cas9 to induce DNA damage in embryo cells in a highly controlled
manner, allowing a critical evaluation of DNA repair capacity.
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Possible outcomes after CRISPR-Cas9 targeting in

human embryos OXFORD

Sequence changes
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CRISPR-Cas9 targeting Is highly efficient in microinjected human

zygotes SRFORD

Targeting efficiency extremely high (100%) 27/27 embryos

44.9% NHEJ
9.0% HDR
20.5% Segmental Aneuploidy

46% o 10.3% Inversion/Translocation
Absent/ 54% BN 10.3% Large Deletion
aberrant  Successful DSBs n=78 )
. i B 51% Whole-targeted chrom. loss
repair repair

0.0% IH-HR

...However, they are deficient in repair!




Double-stranded break repair is deficient in human

embryos prior to activation of the embryonic genome OXFORD

Low-pass genome sequencing analysis to reveal segmental aneuploidy associated with CRISPR-Cas9
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» 46% (36/78) LUSBs failed to be appropriately repaired affecting two-thirds of embryos
» Failure of DSB repair led to abnormalities affecting the chromosome containing the target site

* Breakpoints contained within the target site



Sequence capture reveals large-scale genomic
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rearrangements in microinjected human zygotes OXFORD
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p13.32 pl3.2 pl23 pl2.1  pll22 plll ql2 q13.11 q13.13 ql4.1 q143 q21.1
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10.3% of all targeting events culminated in large-scale
genomic rearrangements (translocations and inversions)

L\\

DsB

; 1bp deletion (NHEJ)

Carries a possibility of stable transmission through mitosis
and therefore a risk of congenital abnormalities in the

oirspring



Delay in mitotic progression of blastomeres with unresolved DSBs

IS consistent with checkpoint activity in preimplantation embryos i

Time between pronuclei appearance
and breakdown

25 23.54

20 19.13

15 14.42

10

Hours

[43]

COI'ItI'O|S |CS| edited embryos ICSl edited ICSI edited ICS| edited
no unresolved resolved

segmentals DSBs segmentals

Significant delay in mitotic progression indicates checkpoint activity

>1/3 embryos with seg. aneuploidy progressed, indicating relaxed checkpoint control



Most loss of heterozygosity (LOH) events at the targeted

sites are a consequence of aberrant DNA repair
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LOH due to Failed/Aberrant Repair

Bl Failed/Aberrantrepair ~ ™® 44% Segmental aneuploidy
1 Allele drop-out Bl 22% Inversion/Translocation
Bl 22% Large deletion

B 11% Whole targeted chromosome loss
0% IH-HR
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Long-range Nanopore sequencing reveals PCR-based amplicon genotyping

~1.5kb deletion in the edited locus reveals WT-homozygous genotype



Genome-edited cleavage stage embryos repair DSBs

predominantly by HDR
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A group of embryos (n=37) were Frequency of the editing outcomes

allowed to develop into 6-cell stage 106~

(post-EGA) and then microinjected Bl NHEJ
with CRISPR-Cas9 80 - Bl HDR
60— Bl Absent/aberrant repair
Only 16% were successfully targeted
and 100% repaired the DSBs with 40
HDR 20—
Rate of seg. ancuploidies greatly =
reduced, consistent with the notion
that DN A repair is fully functional post &
EGE

>
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...Perhaps clinical application can be considered at this stage?



Conclusions
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Fertilization stage is the most optimal for targeting efficiency. It also appears to
be the stage when human embryos are most susceptible to DNA damage.

Genome editing by CRISPR is highly efficient in producing DSBs, and these are

predominantly repaired by NHEJ (84%).

 HDR needed for correction of most mutations but seldom used by the cells
(<10%)

Segmerntal abnormalities and genomic rearrangements are a prominent
unintended effect of application of CRISPR-Cas9 in human embryo cells.



Conclusions
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Limited DNA repair capacity indicates that current GE tools cannot be safely
applied at the earliest stage of development (but maybe okay later?)

HDR appears to be the predominant form of repair in the post-EGA human
embryo

Significant implications for ART, potentially helping to guide the formulation new
embryo culture systems
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