The Evolution of PGT Methods PGT Back to the Future

PGDIS 21st Meeting Kuala Lumpur, Malaysia May 6, 2021

Mark Hughes, MD, PhD

The Symphony of Life.....The Genetic Cacophony of Starting It

Starry Southern Sky. Kit Peak Nat'l Observatory – Arizona, USA

Same exact sky. Nothing has changed. Except the detection technology.

James Webb Telescope

The Beginnings of PGT

The Beginnings ("science fiction") of PGT -M ("PGD)

Volume 327: 905-909

September 24, 1992

Number 13

Birth of a normal girl after in vitro fertilization and preimplantation diagnostic testing for cystic fibrosis AH Handyside, JG Lesko, JJ Tarin, RM Winston, and MR Hughes

Between 2014 and 2016, 94,935 PGT cases performed in USA
 Producing 26,822 babies.

Cooper Genetics is performing PGT-M on 400+ embryos/month

Nomenclature Mess

- PGD for Diagnosis
- PGS for Screening of Chromosomes
- CCS for Comprehensive Chromosome Screening
- PIGD

In 2016 PGDIS attempted to consolidate all the confusion:

- PGD M for monogenetic disorders; Mendelian conditions)
- PGD A for aneuploidy
- PGD SR for structural rearrangements
- World has settled on PGT

PGT-M Technologies

Biggest problem was TIME.

- In 1990, no technology existed for a 12-hour turn-around of molecular data. (shipment)
- PCR and quick electrophoresis.
 - Cleverly designed, nested PCR oligo-primers to control what would amplify.

Real Time, Quantitative PCR. (qPCR)

- 3 or 4 locus-specific amplicons along any/each chromosome. Quick.
- Good for very common gene mutations but otherwise, expensive.
- Multiplex-PCR. Mutation of interest AND flanking STRs for haploblock confirmation.
 - A single blastomere was analyzed for many different alleles in one reaction

Whole Genome Amplification (WGA)

- Many different amplification techniques have been developed & tested (1 cell)
 - DOP-PCR (2002) used Degenerative Oligonucleotide Primer)
 - PEP-PCR (primer extension pre-amplification, with Klenow or T4 polymerase)
 - MDA (2006) used isothermic multiple displacement amplification)
 - Random hexamers and phi29 polymerase
 - Strand displacement technology
 - Produced chimeric DNA in high abundance, complication downstream analysis
 - Pico-plex PCR (2008) Proprietary quaisi-random primers bind to selective sites
 Currently the most widely used WGA in single-cell testing.
 - PTA (2020) Primary Template-directed Amplification (DNA photocopier)

PGT-M Technologies

SNP Arrays – a determination of "mutant" and "normal" haploblocks

Oligonucleotides on a bead – millions of beads

Follow haploblocks highly validated SNP arrays

Follow the haplo-block shuffle

Massively Parallel Next-Gen Sequencing

Human Fertilized Egg – Metaphase Plate Forming

Human Embryo - 2009

Courtesy Gerald Schatten - 2009

The Birth of PGT-A: FISH of Blastomere

11 Probe FISH

FISH on Steroids ("quantative PCR")

$\rightarrow \leftarrow \rightarrow \leftarrow \rightarrow \leftarrow$

24 chromosome pairs x 4 markers = 96 rxns Misses Deletions, Duplications, Inversions

2007: Affymetrix ("original Grand-Daddy") Platform

PGS One Blastomere – Multiple Genotypes (2007) Chrom 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 21, 22, X, Y

Microarrays: Comparative Genomic Hybridization (aCGH)

Human Cleavage-Stage Embryo One Blastomere

Hughes Lab

Normal Female Embryo

Normal Male Embryo

Score Card: PGS Chromosome Technologies

	FISH	QPCR	aCGH	FAST-A	SNPs	hr-NGS
Total Data Signals	11	96	2,700	50,000	75,000	1.2 M

One Fluorescent data point per chromosome

Score Card: PGS Chromosome Technologies

	FISH	QPCR	aCGH	FAST-A	SNPs	hr-NGS
Total Data Signals	11	96	2,700	50,000	75,000	1.2 M

Score Card: PGS Chromosome Technologies

	FISH	QPCR	aCGH	FAST-A	SNPs	hr-NGS
Total Data Signals	11	96	2,700	~50,000	~75,000	~1.2 M

~130,000 data points / chromosome iotic aneuploidy and ...

Next Generation DNA Sequencing

ightarrow

- Next Gen Sequencing
 - The \$50,000,000 (March 2003)
 - **\$13,000** (February 2009)
 - \$2,500 (Sept 2012)
 - \$2,000 (July 2014)
 - **\$1,250** (Dec 2021)

Think about:

Technology is the Fuel.

The most profound discoveries come from

collaborative interactions & serendipitous events

Is more always better?

Have we learned lessons from Mosaicism?

How do we balance our Discovery Science with the money?

> Numbers drive everything. We must not compromise integrity.