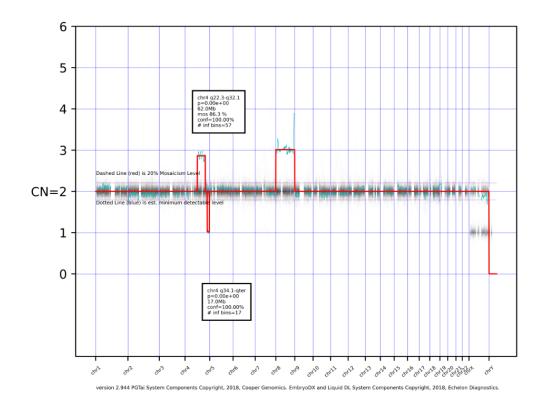
Segmental Aneuploidy Patterns Akin to Cancer Cells in 100+ Blastocysts

The Interchromosomal Effect is Dead Long Live the Intrachromosomal Effect

Balsam Al Hashimi, Nick Macklon, Kamal Ahuja, Sioban Sen Gupta, Tony Gordon, Darren K Griffin


London Women's Clinic, 113-115 Harley Street, London, W1G 6AP, UK

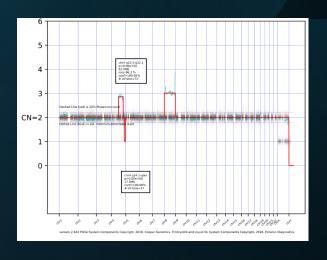
University of Kent, School of Natural Sciences, Giles Lane, Canterbury, CT2 7NJ, UK

Cooper Surgical, I-HUB, 84 Wood Lane, London, W12 0BZ, UK

Overview

- Introduction Segmental Aneuploidy (SA)
- Setting, study design and outcome measures
- Results
- Discussion
 - Outcomes vs. hypotheses
 - Novel findings

Unbalanced Structural Chromosomal Abnormalities

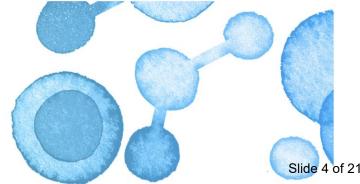

Segmental Aneuploidy (SA)

What do we Know?

- Gain or loss of parts of (not the entire) chromosome
- Similar consequences to whole chromosome aneuploidy
 - Natural and assisted reproduction
- Identified during PGT-A and PGT-SR
 - 7% of aneuploid biopsies
- Understanding its origin vital for improving ART outcomes
 - Requires exploration of its incidence and mechanisms
- Arises at meiosis or in early cleavage
 - Chromosomal breakage and recombination
- Disrupts normal embryonic development by altering gene dosage
- May be accompanied by non-disjunction event at meiosis or mitosis and/or ectopic/abnormal recombination

SA:

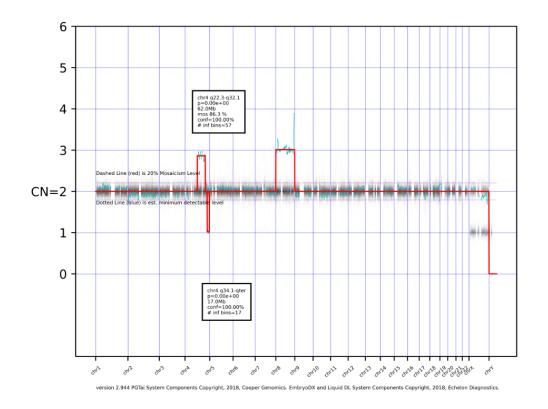
What Do we NOT Know?



 Parent and phase origin in human preimplantation development

- Because, until recently, we did not have novel SNP-based NGS technologies to investigate it
- PGT complete (Cooper Surgical) provides those tools
 - Coupled with parental genotype
 - Provides parent and phase of origin of haploblocks
 - Interpretation similar to Karyomapping
 - Handyside et al. 2010

Purpose of this Study


To provide a reappraisal of the origin of SA in human preimplantation development through study of 100+ embryos

Two hypotheses

- SA, like whole chromosome aneuploidy, is predominantly maternal in origin
- There is broad correlation between TE and ICM
 - As has previously been reported for whole chromosome aneuploidy

Overview

- Introduction Segmental Aneuploidy (SA)
 - Setting, study design and outcome measures
- Results
- Discussion
 - Outcomes vs. hypotheses
 - Novel findings

Setting

London Womens Clinic

LWC Harley Street London

Undergoing routine IVF and PGT-A

Advanced Maternal Age, recurrent implantation failure or recurrent miscarriage

April 2020 – December 2024

Full IRAS ethical approval granted

University of Kent Research and Ethics Committee made fully aware of the project

None had known parental balanced translocations

Cannot rule out that a small number may have, incidentally, had e.g. a balanced translocation or inversion

Patients did not give consent for routine karyotyping

Study Design

Selected if biopsy result returned evidence of "full blown" (non-mosaic) SA

- Isolated ICM, then took a second TE biopsy (gentle "flicking" method)
- Therefore examined 2xTE biopsies and ICM for all embryos

Deeper analysis to establish the origin of the error

- If algorithm detected parent of origin of gain/loss then
 - Error was assumed to be meiotic (usually meiosis I) in origin
 - Because SNPs from both grandparental chromosomes could be detected (gains) or loss of one set of grandparental alleles could be discriminated

Gains or losses in which parent of origin could <u>not</u> be detected

- Post-zygotic (PZ) in origin
- Meiosis II loss/gain
- Gain/loss was too small to determine the origin accurately (<5Mb)

102 embryos from 84 patients

• In reality, each would provide an interesting individual clinical case study

Outcome Measures

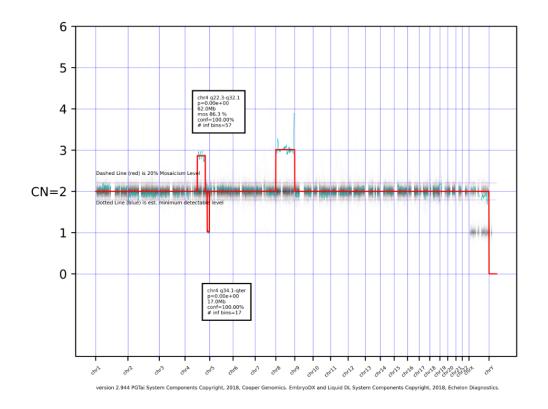
Parent and phase of origin

Concordance

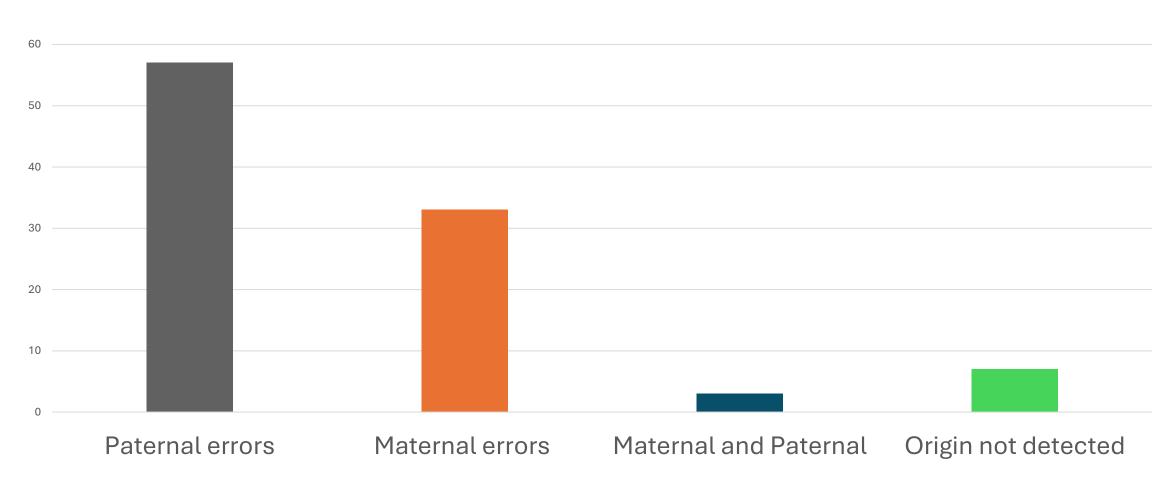
- Three layers concordant
- Two of three layers concordant
- All three not concordant
- Concordance only for SA indicated
- Non-concordance for whole chromosome aneuploidy disregarded

Did SA perpetuate a further SA on the same chromosome?

• Intrachromosomal effect


SA "rescue"

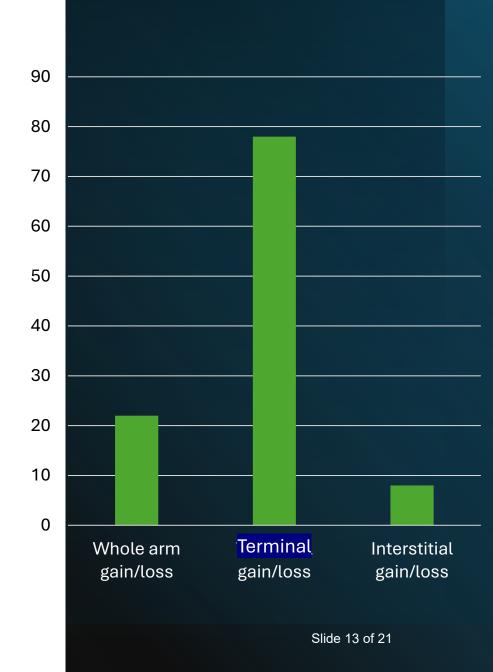
Meiotic SA seen in one sample is not present in at least one other


Slide 9 of 21

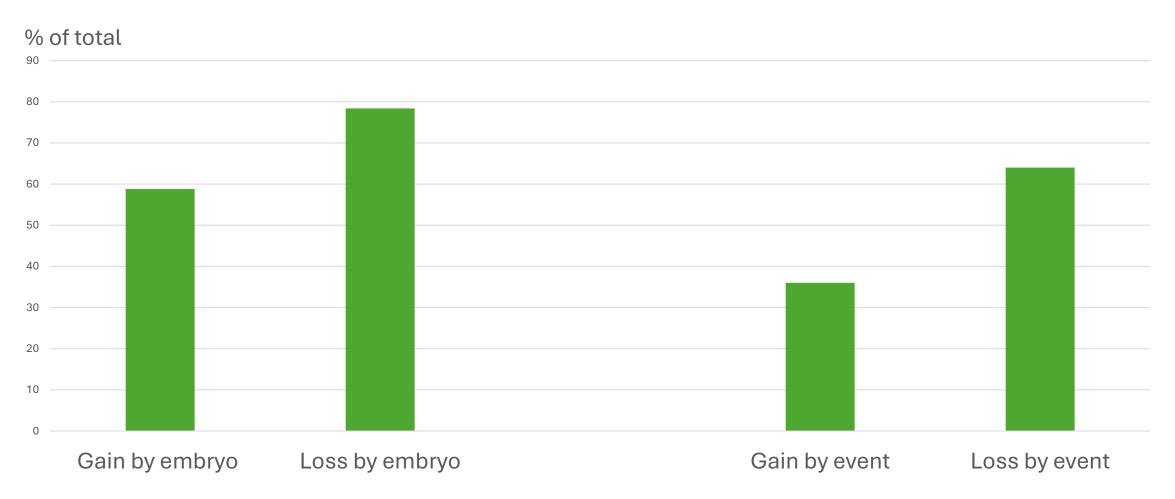
Overview

- Introduction Segmental Aneuploidy (SA)
- Setting, study design and outcome measures
 - Results
- Discussion
 - Outcomes vs. hypotheses
 - Novel findings

Parent and Phase of Origin



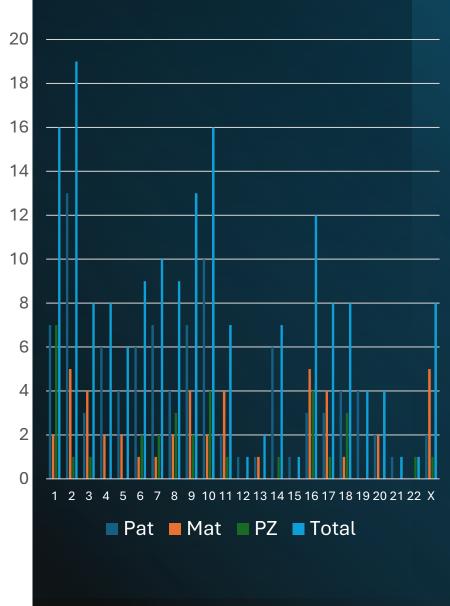
Intrachromosomal Effect and SA Rescue


- "Intrachromosomal effect" in 46 embryos (45.1%).
 - SA had been identified in one sample, further errors of the same chromosome were apparent in at least one other
- "SA rescue" in 40 embryos (39.2%)
 - While an error was seen in one sample (of meiotic origin)
 - Not present in at least one other
- 10 embryos (9.8%) both evidence of SA rescue *and* intrachromosomal effect

Types of Chromosome Abnormality

- Terminal gain/loss the most common
- Whole arm gain/loss
- Interstitial is rare
- Isochromosomes in 6 embryos (5.9%)
- Ring chromosomes in 9 embryos (8.8%)
- Parents not karyotyped but patterns consistent with a segregating inversion in 6 embryos (5.9%)
- Some echoes of cancer cells

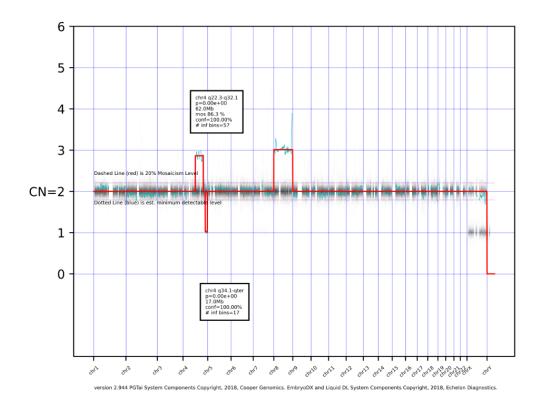
Gain vs. Loss



Concordance

Analysis by ChromosomeNumber of Errors

- All chromosomes represented at least once
- Some association with size of chromosome
 - Larger chromosomes 1 and 2 have the most
 - Smallest 21 and 22 have the least
- Chromosomes 9 and 10 perhaps over-represented
- Chromosomes 12 and 15 perhaps under-represented
- Differences do not reach statistical significance


ICM vs. TE

- All 102 embryos ascertained on the basis that there was an SA error in TE1
 - Thus there was an ascertainment bias
- Nonetheless, of these
 - 16 had euploid ICM and 16 a euploid TE2 (all but one were the <u>same embryos</u>)
 - 31 in the ICM and 34 in TE2 had whole chromosome aneuploidies only
- Of the 102 embryos originally diagnosed as having SA (TE1)
 - Not present in ICM of 47 embryos
 - Not present in TE2 of nearly half (50) of embryos

Overview

- Introduction Segmental Aneuploidy (SA)
- Setting, study design and outcome measures
- Results
 - Discussion
 - Outcomes vs. hypotheses
 - Novel findings

Outcomes cf. Hypotheses

- SA, like whole chromosome aneuploidy, is predominantly maternal in origin
- REJECTED: SA is predominantly <u>paternal</u> in origin
- There is broad correlation between TE and ICM
- REJECTED: Fully concordant was the least common category (though 2 of the three concordant was the most)

Novel Findings

- Intrachromosomal effect
 - One error perpetuates further errors on the same chromosome
 - Interchromosomal effect previously debunked (Griffin and Ogur 2022)
 - Related to chromothripsis?
- SA rescue
 - Whole trisomy rescue is rarely reported in preimplantation embryos
 - Unlike for whole chromosome aneuploidy, mosaicism does not arise post-zygotically
- Chromosome patterns reminiscent of cancer cells
 - Ring chromosomes, isochromosomes, terminal losses/gains
 - Helps invasive nature of blastocyst during implantation?

Acknowledgments

- Balsam Al Hashimi
- Nick Macklon
- Kamal Ahuja
- Sioban Sen Gupta
- Tony Gordon

BMJ Connections
Clinical Genetics and Genomics

Topic Collection

Advances in Non-Invasive Prenatal Genetic Testing

Call for Papers

connectionscgg.bmj.com

London Womens Clinic

