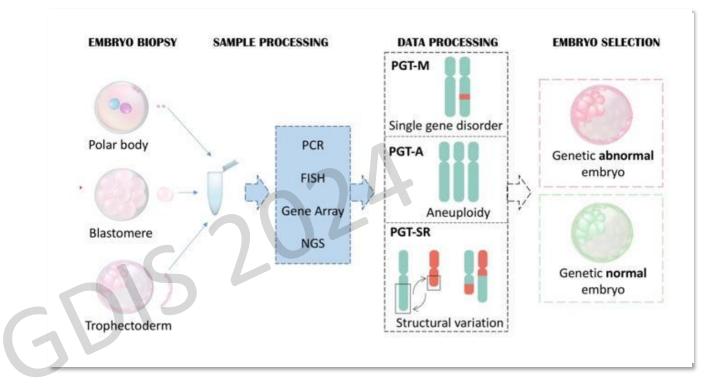


Analysis of spent culture medium

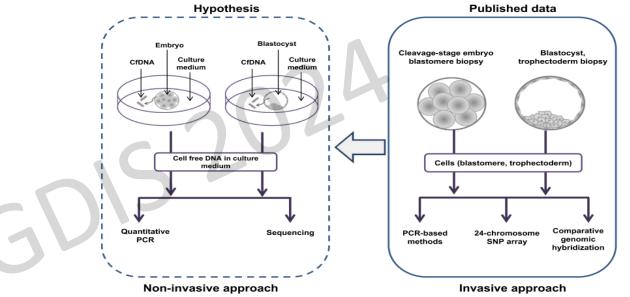
Richard CHOY, PhD Professor, Department of Obstetrics and Gynaecology The Chinese University of Hong Kong


Outline

- Why analysis spent culture medium
- Part I: Non-invasive PGT-A (niPGT-A)
- Part II: Metabolic profiling

Biopsy hurts the embryo

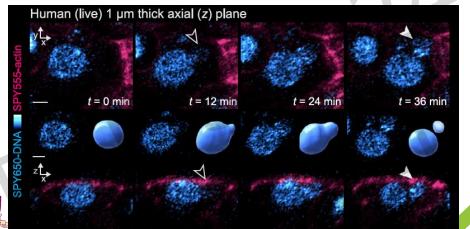
What are the down sides of PGT?

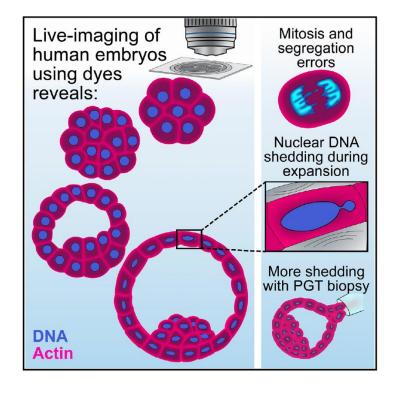

- Increases costs IVF
- Need elective cryopreserving embryos, delay ET until results back
- Invasive procedure
 - Embryo biopsy may affect embryo development
 - Lead to potential loss of embryo
 - Long -term effect of embryo biopsy not defined at this time
 - Reported to have 5% relative reduction in live birth rate due to damage and also false positive results from inherent technical errors

Hypotheses to analysis spent culture medium

- Embryos release DNA, RNA, and protein molecules into its surroundings (handling and/or culture media)
- The <u>identities</u> and <u>quantities</u> of these molecules reflect the health and birth potential of the embryo

Human embryo reveals nuclear DNA


Please cite this article in press as: Domingo-Muelas et al., Human embryo live imaging reveals nuclear DNA shedding during blastocyst expansion and biopsy, Cell (2023), https://doi.org/10.1016/j.cell.2023.06.003



Article Human embryo live imaging reveals nuclear DNA shedding during blastocyst expansion and biopsy

Ana Domingo-Muelas,^{1,2,10} Robin M. Skory,^{1,3,10} Adam A. Moverley,^{1,4} Goli Ardestani,⁵ Oz Pomp,¹ Carmen Rubio,⁶ Piotr Tetlak,¹ Blake Hernandez,¹ Eric A. Rhon-Calderon,¹ Luis Navarro-Sánchez,⁶ Carmen M. García-Pascual,⁶ Stephanie Bissiere,¹ Marisa S. Bartolomei,¹ Denny Sakkas,^{5,*} Carlos Simón,^{2,7,8,9,*} and Nicolas Plachta^{1,11,*}

Analysis spent culture medium

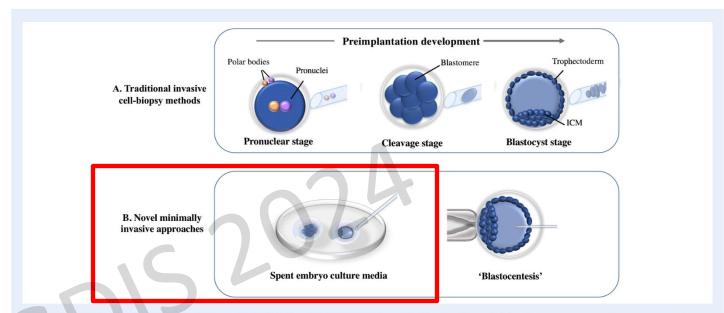
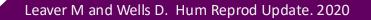
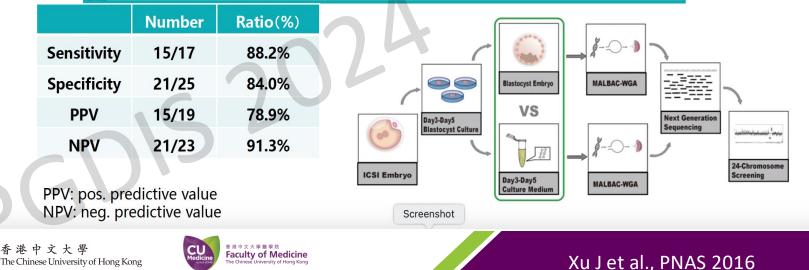
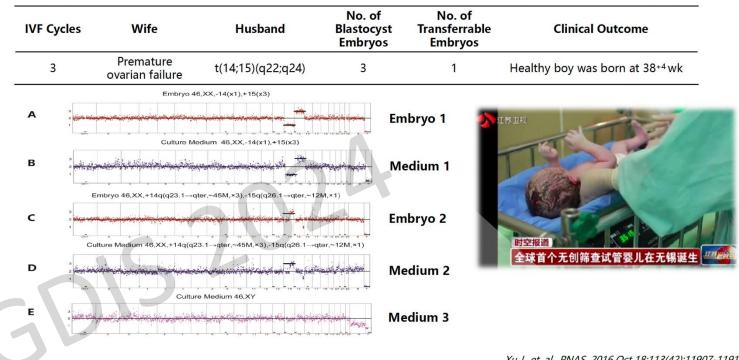



Figure 1 Methods of obtaining embryonic DNA for preimplantation genetic testing. (A) Traditional invasive methods comprise biopsy of both polar bodies, blastomere(s) from cleavage stage embryos, or trophectoderm cells from blastocyst stage embryos. (B) Novel minimally invasive approaches of obtaining embryonic genetic material for analysis include analysis of DNA in spent embryo culture media and the blastocoel fluid of blastocyst embryos.


Part I: Non-invasive PGT-A (niPGT-A)

Noninvasive chromosome screening of human embryos by genome sequencing of embryo culture medium for in vitro fertilization


Juanjuan Xu^{a,1}, Rui Fang^{b,1}, Li Chen^{a,1}, Daozhen Chen^b, Jian-Ping Xiao^b, Weimin Yang^b, Honghua Wang^b, Xiaoqing Song^b, Ting Ma^c, Shiping Bo^c, Chong Shi^c, Jun Ren^c, Lei Huang^{d,e,f,g}, Li-Yi Cai^{b,2}, Bing Yao^{a,2}, X. Sunney Xie^{d,g,h,2}, and Sijia Lu^{c2}

he Chinese University of Hong Kong

^aReproductive Medical Center of Nanjing Jinling Hospital and the Collaborative Innovation Platform for Reproductive Biology and Technology, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China; ^bReproductive Medicine Center, Wuxi Maternity and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, China; Department of Clinical Research, Yikon Genomics Company, Ltd., Shanghai 201499, China; ^dBiodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China; [®]Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Boston, MA 02115; [†]Harvard Medical School, Boston, MA 02115; [®]Beijing Advanced Innovation Center for Genomics, Peking University, Beijing 100871, China; and ^hDepartment of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 01238

First clinical case

Xu J., et. al., PNAS, 2016 Oct 18;113(42):11907-1191.

Non-invasive PGT-A (niPGT-A)

Spent Embryo culture medium (SCM)

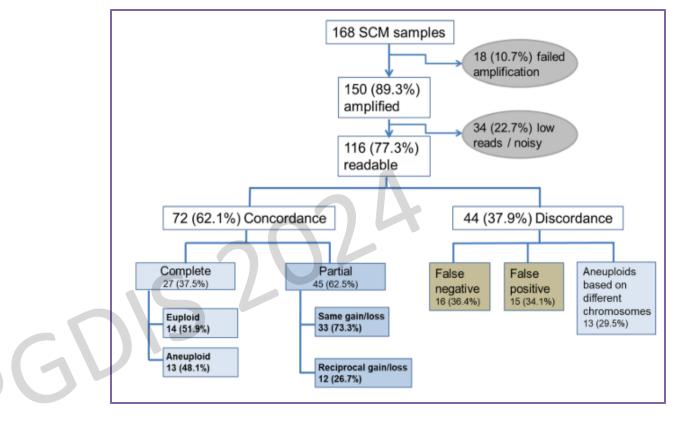
Journal of Assisted Reproduction and Genetics https://doi.org/10.1007/s10815-019-01517-7

ASSISTED REPRODUCTION TECHNOLOGIES

Noninvasive preimplantation genetic testing for aneuploidy in spent medium may be more reliable than trophectoderm biopsy

Lei Huang^{a,b}, Berhan Bogale^b, Yagiong Tang^{c,d}, Sijia Lu^e, Xiaoliang Sunney Xie^{a,c,d,1}, and Catherine Racowsky^{b,1}

^aDepartment of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138; ^bDepartment of Obstetrics and Gynecology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; 'Beijing Advanced Innovation Center for Genomics, Peking University, Beijing 100871, China; ^dBiomedical Pioneering Innovation Center, Peking University, Beijing 100871, China; and ^eDepartment of Clinical Research, Yikon Genomics Company, Ltd., Shanghai 201499. China



A prospective study of non-invasive preimplantation genetic testing for an euploidies (NiPGT-A) using next-generation sequencing (NGS) on spent culture media (SCM)

Queenie S. Y. Yeung¹ · Ying Xin Zhang² · Jacqueline P. W. Chung¹ · Wai Ting Lui² · Yvonne K. Y. Kwok² · Baoheng Gui^{3,4} • Grace W. S. Kong¹ • Ye Cao² • Tin Chiu Li¹ • Kwong Wai Choy^{2,3}

e Chinese University of Hong Kor

PGT-A vs niPGT-A concordance rate

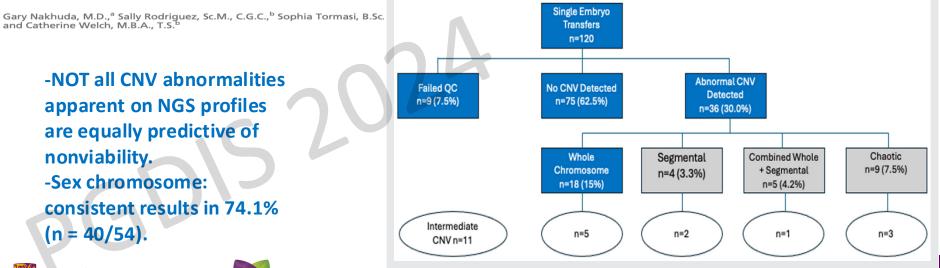
PGT-A concordance 62% between SCM and trophectoderm (TE)

Overview of current niPGT-A application

Table IV niPGT-A analysis of SCM.

Study	Sample details		Analysis			Concordance (%)				
	Media analyzed	Sample number	Amplification method	Amplification rate (%)	Cytogenetic method	Sequencing platform	Overall ploidy (aneuploid or euploid)	Full karyotype	Per single chromosome	
Spent medi	pent media only									
Shamonki et <i>al.</i> (2016)	D3-5/6	57	Repli-G (Qiagen)	97	aCGH (Agilent Technologies)	Not applicable	-	-	-	
Xu et al. (2016)	D3-5	42	MALBAC (Yikon Genomics)	100	NGS (NEB Ultra DNA Kit, NEB)	HiSeq 2500 (Illumina)	Normal (euploid) vs'abnormal' (inc. mosaicism and segmentals): WE: 86	-	-	
Liu et al. (2017)	D1-5	88	MALBAC (Yikon Genomics)	91	NGS (Library prep method not specified)	HiSeq 2500 (Illumina)	Normal (euploid) vs'abnormal' (inc. mosaicism and segmentals): TE: 84	Including > 40% mosaicism and large copy number variation: TE: 65. Cells of arrested/ degenerated embryos (which didn't reach blastocyst stage): 44	-	
Feichtinger et al. (2017)	DI-5	22	SurePlex (Illumina)	82	aCGH (24Sure, Illumina)	Not applicable	Euploid vs aneuploid: PB: 72		PB: 49% of single chromosomal aneuploidies concordant with SC	
Ho et al. (2018)	DI-3 DI-5	41	PicoPLEX (Rubicon Genomics), using 20 cycles instead of 14	D1-3 = 39 D1-5 = 80	NGS	Ion S5 Sequencer (Life Technologies)	Euploid vs aneuploid: DI-3 SCM vs WE: 56 DI-5 SCM vs WE: 46		-	
Vera- Rodriguez et al. (2018)	D3-5	56	SurePlex (Illumina), then a second round using Ion Reproseq (TherrmoFisher)	91	NGS (Ion Reproseq, ThermoFisher)	Ion PGM instrument (ThermoFisher)	Both aneuploid: TE: 30	Including Whole segmental chromosome aneuploidies aneuploidies and only: mosaicism: TE: 5 TE: 16	_	
Fang et <i>al.</i> (2019)	D3-5/6	170	MALBAC (Yikon Genomics)	97	NGS (NEB Ultra DNA Kit, NEB)	HiSeq 2500 (Illumina)	-		-	
Huang et <i>al.</i> (2019)	D5-6 and D6/7	52	NICSwift—modified MALBAC (Yikon Genomics)	92	NGS (NEBNext Ultra II DNA kit, NEB)	HiSeq 2500 (Illumina)	Euploid vs aneuploid: WE: 94	Including segmental aneuploidies and mosaicism: WE: 83	-	
Yeung et al. (2019)	D3-5/6	168	SurePlex (Illumina)	89	NGS (VeriSeq, Illumina)	MiSeq (Illumina)	Euploid vs aneuploid: TE: 73	Autosomal chromosomes: TE: 62 Sex chromosomes: TE: 82	-	
Rubio et <i>al.</i> (2019)	D4-5/6/7	115	Modified version of IonReproseq (ThermoFisher)	95	NGS (Ion Reproseq, ThermoFisher)	lon S5TM XL system (ThermoFisher)	Euploid vs aneuploid: D4-5 SCM vs TE = 63 D5-6/7 SCM vs TE = 84 Overall vs TE = 79	Including segmental aneuploidies: D4-5 SCM vs TE = 41 D5-6/7 SCM vs TE = 72 Overall vs TE = 64	-	

- Currently by niPGT-A, not all groups can achieve 100% amplification rate.
- The highest sensitivity is 88.6% and 87.5% by Kuznyetsov, V. *et al*.
- An estimated >20% to 80% of instances involve contamination with maternal genetic material



ARTICLE IN PRESS

ASSISTED REPRODUCTION

A pilot study to investigate the clinically predictive values of copy number variations detected by next-generation sequencing of cell-free deoxyribonucleic acid in spent culture media

-woman of age 35 years or younger at the time of oocyte retrieval

香港中文大學 The Chinese University of Hong Kong

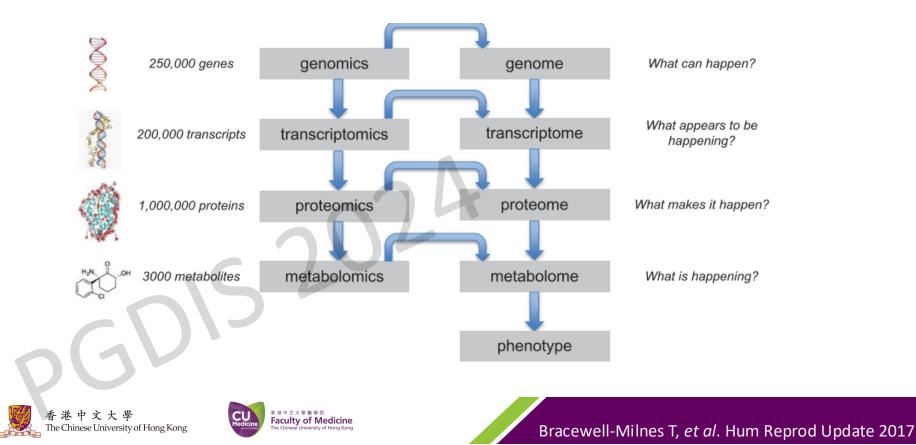
NGS interpretations for 120 single embryo transfers. CNV, copy number variation; NGS, next-generation sequencing; QC, quality control. Nakhuda. Study of predictive values of niPGT-A. Fertil Steril 2024.

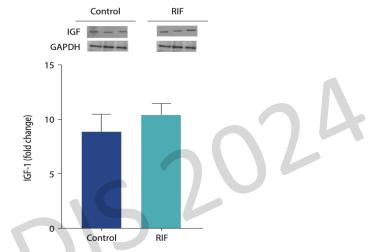
Noninvasive preimplantation genetic testing for aneuploidy in spent culture medium as a substitute for trophectoderm biopsy

Carmen Rubio, Ph.D.,^{a,b} Catherine Racowsky, Ph.D.,^c David H. Barad, M.D., M.S.,^{d,e} Richard T. Scott Jr., M.D., H.C.L.D.,^{f,g} and Carlos Simon, M.D., Ph.D.^{h,i}

Pros and cons:

- 1. How reliable is embryo cfDNA versus teDNA as a representative of embryo chromosomal constitution?
- 2. Is embryo cfDNA secretion related to embryo chromosomal self-correction and/or apoptosis?

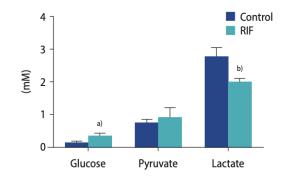

3. What are the reasons that the noninvasive model will prevail or not over the invasive model?4. niPGT-A still an expensive approach



The Multi-omics approach?

Application to predict Repeated Implantation Failure (RIF)

compared between embryos from RIF patients (n=35) and oocyte donors as controls (n=15)


Figure 1. The insulin-like growth factor 1 (IGF-1) protein expression in culture medium from the repeated implantation failure (RIF) and control groups. Values are presented as mean±standard deviation of at least three replicates. GAPDH, glyceraldehyde 3-phosphate dehydrogenase.

中

文大學

The Chinese University of Hong Kong

Figure 2. Glucose, pyruvate, and lactate concentrations in the repeated implantation failure (RIF) and control groups. Values are presented as mean±standard deviation of three replicates. ^{a)}p<0.05; ^{b)}p<0.01.

Metabolic profiling-(niPGT?)

Hypothesis

- Embryo scecrets DNA、RNA and protein into the spend culture medium
- The <u>identities</u> and <u>quantities</u> of these molecules reflect the **health** and **birth** potential of the embryo

Noninvasive chromosome screening o human embryos by genome sequencir of embryo culture medium for in vitro fertilization

Juanjuan Xu, Rui Fang, Li Chen, Daozhen Chen, Jian-Ping Xiao, Weimin Yang Honghua Wang, Xiaoqing Song, Ting Ma, Shiping Bo, Chong Shi, Jun Ren, L Li-Yi Cai, Bing Yao, X. Sunney Xie, and Sijia Lu

PNAS October 18, 2016 113 (42) 11907-11912; published ahead of print September 29, 2016 https://doi.org/10.1073/pnas.1613294113

Contributed by X. Sunney Xie, August 10, 2016 (sent for review April 28, 2016; reviewed by Eva Hoffmann and John Rasko)

Noninvasive metabolomic profiling of embryo culture media using Raman and near-infrared spectroscopy correlates with reproductive potential of embryos in women undergoing in vitro fertilization

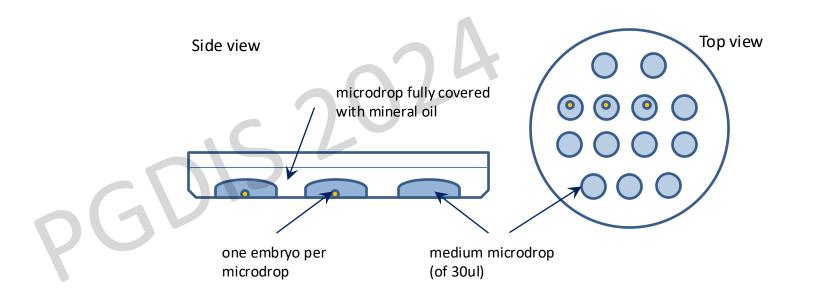
Emre Seli, M.D.,^a Denny Sakkas, Ph.D.,^a Richard Scott, M.D.,^b Shing C. Kwok,^c Scott M. Rosendahl,^c and David H. Burns, Ph.D.^c

^a Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut; ^bReproductive Medicine Associates, Morristown, New Jersey; and ^cDepartment of Chemistry, McGill University, Montreal, Quebec, Canada

Seli et al., 2007 Fertil Steril. 88(5):1350-1357. Xu et al., 2016 Proc Natl Acad Sci. 113(42):11907-11912

Previous Embryonic Metabolomic Profiling

A list of the 92 metabolites found in the spent media of day 3 human embryos.


	Super		Fold change	Р	
	pathway	Metabolite	T vs. N	value	
	Peptide	Glycylglutamine	1.01	.2668	
0	Carbohydrate	Sucrose	1.67	.6042	
		Glucose	1.31	.5945	
		Pyruvate	0.96	.9970	
		Lactate	1.01	.3787	
	Energy	Citrate	0.76	.5763	
L	lipid	Linolenate [alpha or gamma; (18:3n3 or 6)]	0.95	.7597	
		Caproate (6:0)	1.14	.0382	
		Heptanoate (7:0)	0.99	.8784	
		Caprylate (8:0)	1.02	.1597	
		Pelargonate (9:0)	0.98	.8312	
		Caprate (10:0)	0.95	.8317	
		Laurate (12:0)	1.04	.4924	
		Myristate (14:0)	0.92	.0672	
		Myristoleate (14:1n5)	1.05	.8060	
		Oleate (18:1n9)	0.93	.1038	
		Linoleate (18:2n6)	0.92	.0609	
		Dihomo-linoleate (20:2n6)	0.93	.1673	
		Arachidonate (20:4n6)	0.93	.2915	
		Choline	1.01	.6761	
		Glycerophosphorylcholine	1.01	.5283	
		Dehydroisoandrosterone sulfate (DHEAS)	1.02	.7595	
		Epiandrosterone sulfate	1.00	.5858	
		Androsterone sulfate	1.06	.0229	
	\mathbf{n}	4-androsten-3beta, 17beta-diol disulfate 1	1.01	.4111	
		4-androsten-3beta, 17beta-diol disulfate 2	1.05	.2181	
3		Pregnen-diol disulfate	1.01	.8393	
		Pregn steroid monosulfate	0.97	.2769	

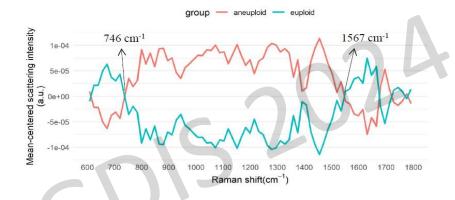
Metabolomic profiling by liquid chromatography mass spectroscopy of 15 SCMs from Trisomy 21 Day 3 embryos and 15 controls.

Methods & Materials

- SCM sample collection
 - Single embryo culture
 - Sequential (G-2) or One-step (G-TL) medium
 - Collect the culture medium and store at -20 °C

Hypothesis

- Non-invasive Preimplantation Genetic Testing
 - Spent Culture Med

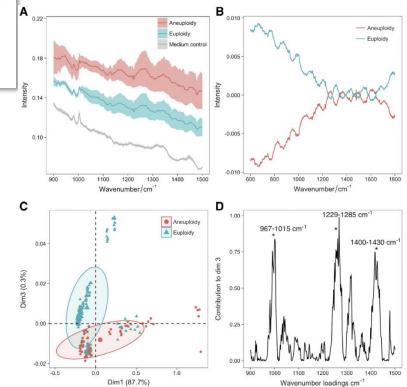

To assess the Aneuploidies or implantation potential of an embryo by Metabolomic Profiling by Raman spectroscopy?

What is Raman spectroscopy?

Is Raman spectroscopy combining machine learning applicable for different types of culture media as a first-tier non-invasive screening test for aneuploidies?

Phase II-Mean-centered gross spectrum of M1 group

Differential scattering intensity across Raman spectrum, classified by PGT-A result on trophectoderm biopsies



Raman 200 machine

Raman profiling of embryo culture medium to identify an uploid and euploid embryos

Unique embryonic metabolomic profiling

Mean-centered Raman spectra demonstrated differential intensities of SCMs from euploid and aneuploid among Day 5 embryos

中

文大學

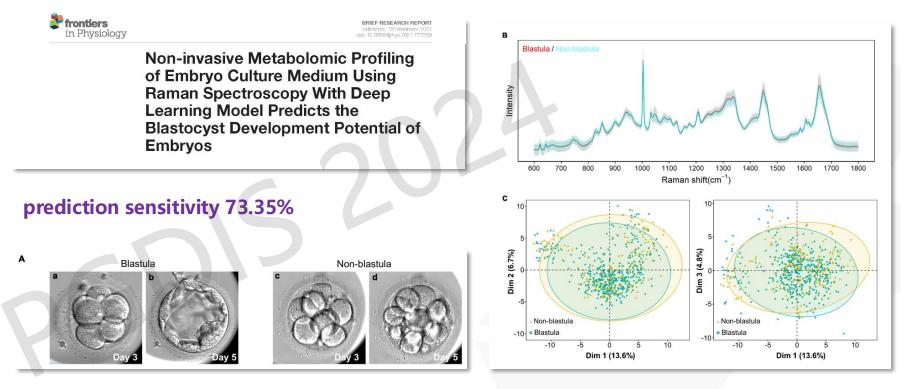
Message from this paper:

- Proof-of-concept of Raman combing machine learning for ploidy prediction
- One type of medium
- · Validation size need to be expanded
- Reproducibility

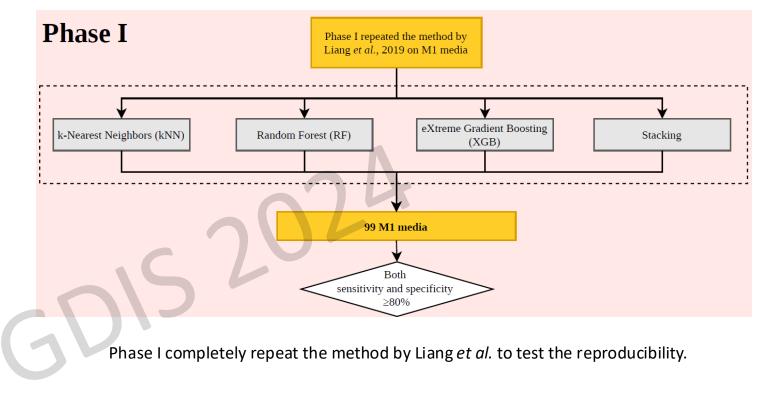
Confusion matrix and performance evaluation of kNN, RF, XGB, and stacking classification models for an independent testing set of 222 Raman spectra.

		Confusion matrix	Performance evaluation				
Model	Actual class	Predicted euploidy	Predicted aneuploidy	Precision	Sensitivity	F1 score	Accuracy
kNN	Euploidy	117	8	96.7%	93.6%	0.951	94.6%
	Aneuploidy	4	93	92.1%	95.9%	0.939	
RF	Euploidy	72	53	78.2%	57.6%	0.664	67.1%
	Aneuploidy	20	77	59.2%	79.4%	0.678	
XGB	Euploidy	116	9	92.8%	92.8%	0.928	91.9%
	Aneuploidy	9	88	90.7%	90.7%	0.907	
Stacking	Euploidy	121	4	96.0%	96.8%	0.964	95.9%
	Aneuploidy	5	92	95.8%	94.9%	0.953	

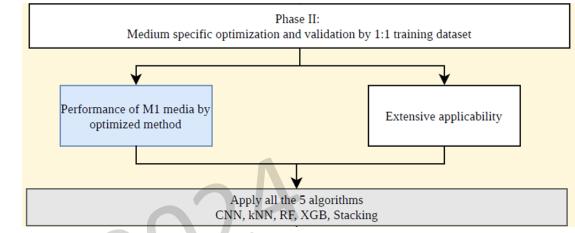
Note: Models were trained from a training set of 885 Raman spectra. kNN = k-nearest neighbors; RF = random forests; XGB = extreme gradient boosting. Stacking analysis is based on a first layer of kNN, RF, and XGB and a second layer of XGB.



Metabolic profiling predicts the blastocyst development potential



让更多家庭生育健康的孩子


Bo Liang and Liang Hu et al. Frontiers in Physiology . 2021

Reproducibility study

Liang B, et al. Fertil Steril, 2019

Aim: Optimization and Validation Study

Optimization by:

- 1. Testing wet lab improved quality control standard
- 2. Algorithms optimized by re-seeking hyperparameters
- 3. Euploid & aneuploid for training re-shuffled and retrained
- 4. Added Convolutional Neural Networks (CNN)

Phase II – Optimization and Validation

Re-trained & tested M1 media

Phase II – M1 Training (30 euploid vs. 30 aneuploid)								
	CNN	kNN	RF	XGB	Stacking			
Sensitivity	86.7% (26/30)	93.3% (28/30)	76.7% (23/30)	86.7% (26/30)	93.3% (28/30)			
Specificity	83.3% (25/30)	76.7% (23/30) 76.7% (23/30)		100.0% (30/30)	83.3% (25/30)			
Stacking Out Phase II – M1 Testing (43 euploid vs. 56 aneuploid)								
	sitivity 75.0% (42)		(39/56) 81.4%	100.0%	4% (45/56) 4% (35/43)			
	83.7% (30)	43) 83.770 (30/43)	(35/43)	(43/43)	+/0 (33/ 43)			

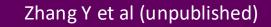
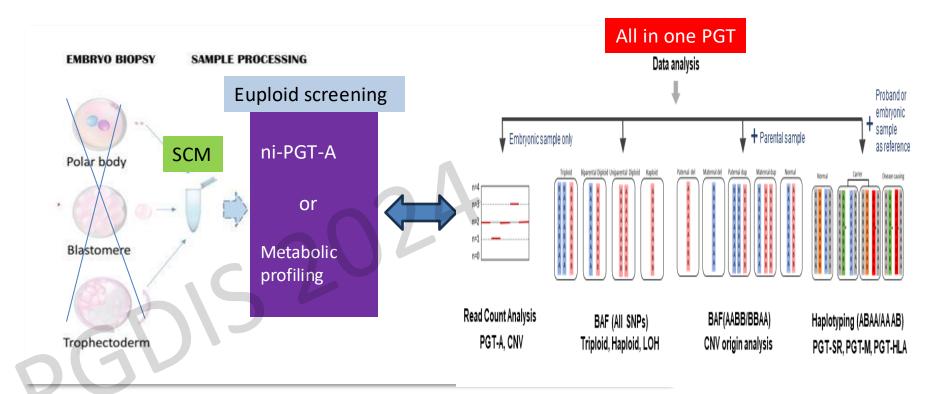


 Table 3. Performance of Raman spectroscopy pregnancy outcome.

	Euploid transfers by TE biopsy (N=102)	Euploid transfers by Raman* (hypothetical, N=97)			
	n (%)	n (%)	Sensitivity	Specificity	
Implantation failure	32 (31.4%)	30 (30.9%)	93.8%	95.7%	
Biochemical pregnancy	8 (11.4%)	8 (11.9%)	72.7%	100%	
Miscarriage (per clinical pregnancy)	12 (19.4%)	11 (18.6%)	91.7%	96.0%	
Ongoing pregnancy/Live birth	50 (49.0%)	48 (49.5%)	96.0%	100%	


*: Stacking algorithm was adopted here considering the best performance shown in our current study.

New algorithm for PGT-A

香港中文大学 **Chinese University of Hong Kong**

Thank You!!

General Research Fund (GRF) **Collaborative Research Fund**

大學教育資助委員會 University Grants Committee E-mail: richardchoy@cuhk.edu.hk

5th BCM-CUHK-UM Joint Symposium in CLINICAL GENETICS

- 🛗 Sep 21-22, 2024
- **O** The Vertical

Connexion Conference & Event Centre

Pre & Post-Congress Workshops -4th UM-CUHK Certificate Course in **Clinical Genetics and Genomics** 🛗 Sep 20, 23 2024 🛛 Universiti Malaya

IMPORTANT DATES

Abstract submission 🗸

Early bird registration 🗸

by May 20, 2024

by Jun 20, 2024

JOINTLY ORGANIZED BY

Department of Molecular and Human Genetics Baylor College of Medicine

Department of Obstetrics and Gynaecology & Department of Paediatrics The Chinese University of Hong Kong

Department of Obstetrics and Gynaecology & Department of Paediatrics Universiti Malaya

Genetic Counselling Society of Malaysia

Brendan LEE

Baylor College of

Medicine

Tak Yeung LEUNG


The Chinese University

Meow Keong THONG Universiti Malaya

www.obg.cuhk.edu.hk/symposium/bcm-2024/

THANK YOU

PGT and BEYOND...