

PGDIS CONFERENCE Kuala Lumpur Malaysia

6-8 May 2024

PGT and BEYOND...

Noninvasive PGT: 8 years of clinical applications

Sijia Lu

7th, May, 2024

Cofounder and CEO of Yikon Genomics

PGT and BEYOND...

Main Contents

NICS Development

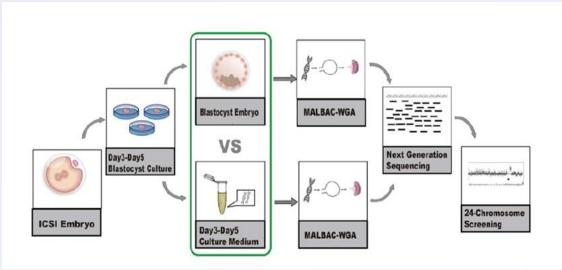
02 PART

NICS Accuracy Validations

03 PART

Clinical Studies and Applications

04 PART



Limitation & Future Prospect

Noninvasive chromosome screening (NICS) Development

NICS Development

NICS baby born in Wuxi, China

Performance	Number	Ratio (%)
Sensitivity	15/17	88.2%
Specificity	21/25	84.0%
PPV	15/19	78.9%
NPV	21/23	91.3%

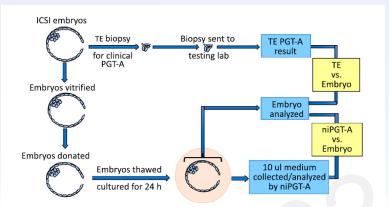
PPV: pos. predictive value; NPV: neg.predictive value

Table 2. Clinical outcome of the first seven patients subjected to NICS

Patient no.	Maternal age	Clinical indications	Transfer cycles	Clinical outcome
P01	30	Reciprocal translocation 46,XY,t(14;15)	1	Singleton pregnancy—live birth
P02	28	Azoospermia	1	Singleton pregnancy—live birth
P03	34	Inversion 46,XY,inv(9)	1	Singleton pregnancy—live birth
P04	32	Reciprocal translocation 46,XX,t(1;18)	2	Implantation failure
P05	26	Recurrent pregnancy loss	1	Singleton pregnancy—live birth
P06	32	47,XYY	2	Singleton pregnancy—live birth
P07	29	Recurrent implantation failure	1	Singleton pregnancy—following up

NICS Accuracy Validations

- ➤ Sample size:52 donated frozen blastocysts
- ➤ Validation method: Whole embryo as a gold standard
- ➤ **Conclusion:** NiPGT-A is more reliable than TE-biopsy PGT-A in frozen-thawed embryos.



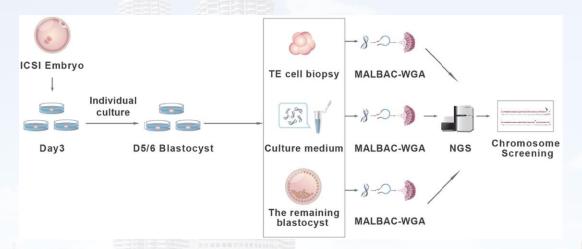

Fig. 2. Workflow of sample processing for PGT-A analysis of TE biopsy, embryo, and spent culture media.

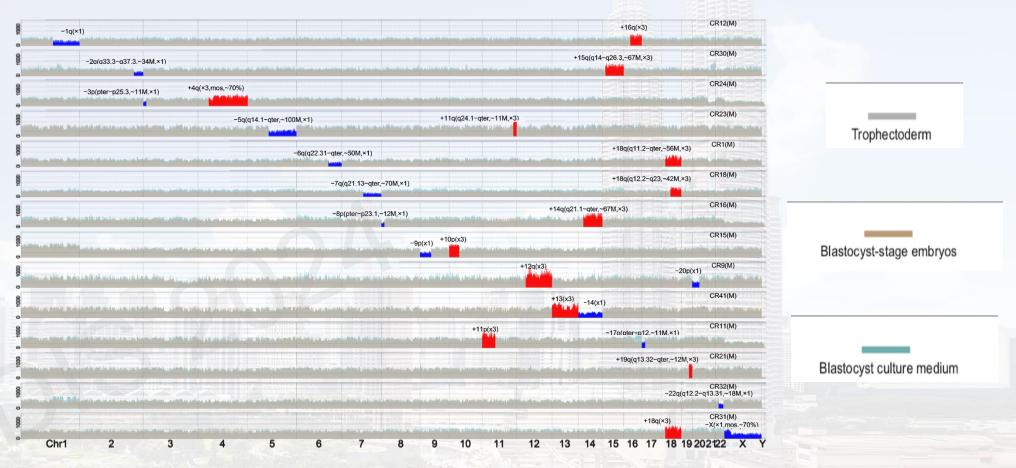
Table 2. Comparison of the performance of niPGT-A versus TE biopsy for PGT-A

Performance characteristic	niPGT-A $(n = 48)$	TE-biopsy ($n = 50$)	
FPR	20.0% (3/15)	50.0% (9/18)	
FNR	0.0% (0/33)	0.0% (0/32)	
PPV	91.7% (33/36)	78.0% (32/41)	
NPV	100.0% (15/15)	100.0% (18/18)	
Sensitivity	100.0% (33/33)	100.0% (32/32)	
Specificity	80.0% (12/15)	50.0% (9/18)	
% Concordance for embryo ploidy	93.8% (45/48)	82.0% (41/50)	
% Concordance for chromosome CNs	83.3% (40/48)	62.0% (31/50)	

niPGT-A and TE biopsy results were compared with those of the embryo. Sequencing threshold was set at 60% mosaicism.

- > Sample size:265 donated embryos
- Validation method: Whole embryo as a gold standard
- Conclusion: Accuracy of NICS comparable to TE-PGT

Assay	Sensitivity % (95% CI)	Specificity% (95% CI)	NPV (95% CI)	PPV (95% CI)
TE-PGT	89.6(81.9-94.2)	80.0(73.1-85.5)	92.8(87.2-96.0)	72.9(64.2-80.1)
NICS	86.5(78.2-91.9)	73.1(65.8-79.4)	90.0(83.6-94.1)	65.9(57.2-73.6)
P	0.6291	0.1524	0.5144	0.2677

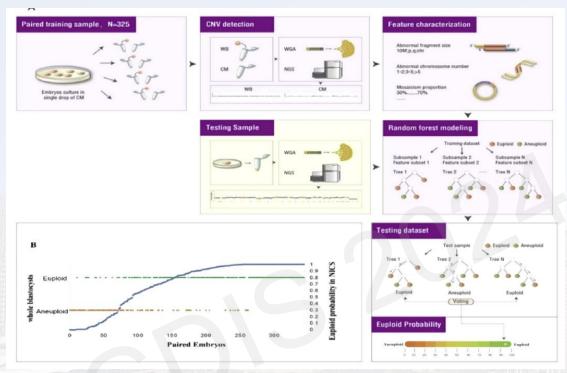

NICS Accuracy Validations

PGT-SR

- ➤ Sample size:41 frozen donated blastocysts
- Validation method: Whole embryo as a gold standard

NICS CNV are highly concordant with biopsied based PGT-SR

Comparison of results from TE and SCM to embryos: red highlights the duplication and blue highlights the deletion related to translocation.



PGDIS NICS Accuracy Validations

NICS AI Grading Strategy

- ➤ 345 paired blastocyst culture medium and whole blastocyst samples
- Embryos were graded as A, B or C according to their euploidy probability levels

NICS AI grading system using the machine learning method.

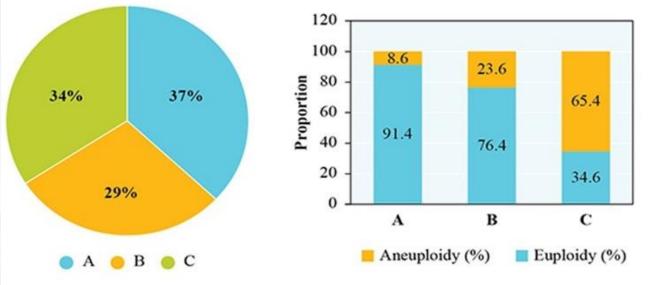


Figure A: NICS grading distribution of grade A, B and C

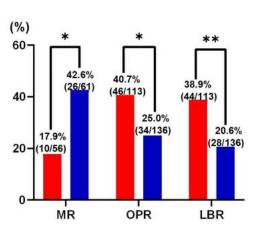
Figure B: Grade A 91.4% Euploid; Grade B 76.4% Euploid;

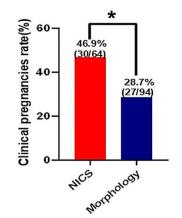
Grade C 34.6% Euploid

Clinical Studies and Applications RPL and RIF patients

Patients with RPL (≥ 3 times) or RIF (≥ 3 times).

A total of 52 euploid embryos were transferred in 43 RPL or RIF patients.


Table 3	Pregnancy	outcomes /	with	NICS
---------	-----------	------------	------	------


	Chromosomal rearrangement	Normal karyotype	Total
Total ET			
Cycles	25	25	50
Patients	22	21	43
(SET/DET)	25/0	23/2	48/2
Transferred euploid blastocysts	25	27	52
Biochemical pregnancies	68% (17/25)	76% (19/25)	72.0% (36/50)
Clinical pregnancies	52% (13/25)	64% (16/25)	58.0% (29/50)
Miscarriages	15.4% (2/13)	6.2% (1/16)	10.3% (3/29)
Deliveries	11	15	26
Singleton/twins	11/0	14/1	25/1
Babies born (male/female)	11 (6/5)	16 (9/7)	27 (15/12)
Birth weight (g, mean \pm SD)	3283.7 ± 412.4	3174.7 ± 391.5	3217.5 ± 403.4

A total of 27 healthy babies were delivered.

Patients with subclinical RPL and RIF

A total of 273 women with a history of RPL or RIF

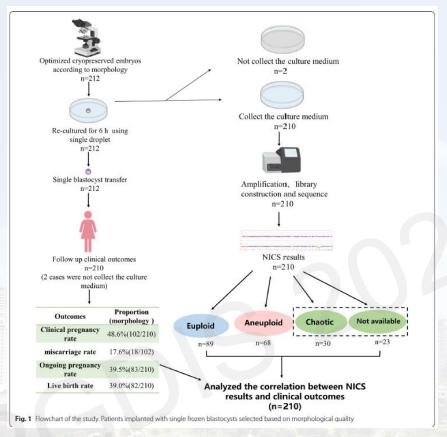
Patients with RPL>2 times or once with abnormal product of conception.

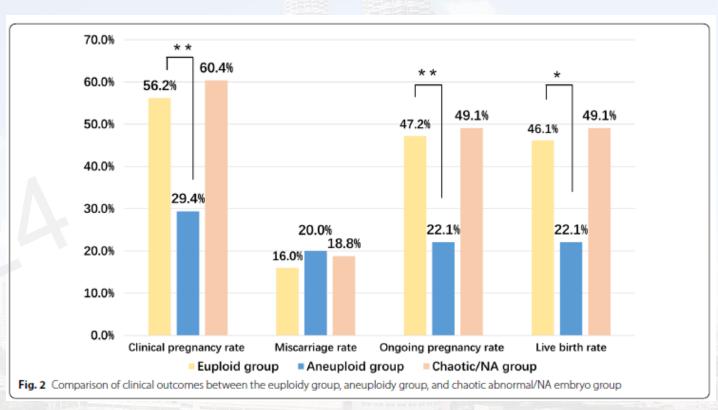
Reduce the incidence of miscarriage Increase ongoing pregnancy rate

Patients with RIF≥2 times

Increase the clinical pregnancy rate

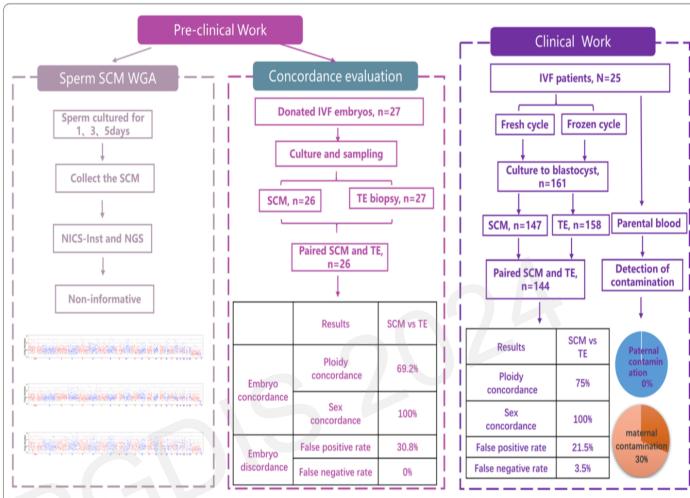
Xi H., et al., Front Endocrinol . 13:896357.


Fang R., et al., J Transl Med. 2019 Mar 8;17(1):73.



Clinical Study and Applications Frozen-thawed cycles

- 212 frozen-thawed single-blastocyst transfers based on morphological grades
- SCM collection in preincubation for 6 h after thawing


The pregnancy rates were significantly higher in both the euploidy and N/A groups compared to the aneuploidy group.

Clinical Study and Applications

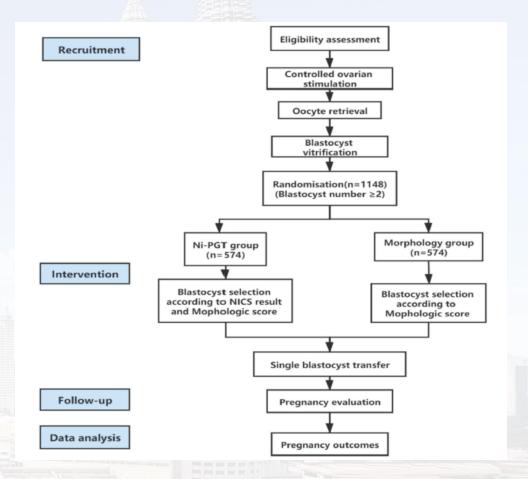
Conventional IVF

Fig. 1 Illustration of the systematic validation of the IVF–NICS assay. Two parts were included. The left panel shows the clinical work, which includes the sperm culture medium WGA and NICS detection and concordance evaluation. The right panel shows clinical work, and a total of 161 embryos were assessed using both the NICS and TE biopsy samples from 25 IVF patients

- Failed sperm DNA amplification in the current amplification system
- No paternal contamination was observed in conventional IVF SCM.
- ➤ IVF NICS performances \approx ICSI.

	Concordance	Sensitivity	Specificity	PPV	NPV
IVF-Adjusted	75%(108/144)	91.38%(53/58)	63.95%(55/86)	63.1%(53/84)	91.67%(55/60)
ICSI-Adjusted	74.58%(88/118)	84.21%(48/57)	65.57%(40/61)	69.57%(48/69)	81.63%(40/49)
P-Value	0.94	0.24	0.84	0.40	0.12

Clinical Study and Applications



➤ ESNi-PGT (Embryo Selection by Noninvasive Preimplantation Genetic Test, NCT04339166)

ClinicalTrials.gov PRS Protocol Registration and Results System Home > Record Summary Contact ClinicalTrials.gov PRS Org: PekingUTH User: JQiao Logout					
ID: ESNi-PGT Embryo Selection by Noninvasive Preimplant	ntation Genetic Test NCT04339166				
	Record Summary				
Nome Help					
Record Status					
In Progress → Entry Completed → Approved → Released → PRS Review → Public					
Reset to In-Progress					
Record Owner: JQiao	Access List: [] Edit				
Last Update: 04/03/2020 03:50 by JQiao	Upload: Allowed Edit				
Initial Release: 04/01/2020	PRS Review: Review History				
Last Release: 04/07/2020 Receipt (PDF)	Public Site: Last Public Release: 04/07/2020 View on ClinicalTrials.gov				
	FDAAA: Non-ACT (No FDA-regulated drug/device)				

1148 couples aged 35~42 (women) are planned to be enrolled from 13 IVF centers in China mainland.

finished recruting patients in 2023 result unblinded April 2024.

Embryo Transfer

Prioritization

A Double-blind, randomised controlled trial

Clinical Usage/Benefits

- ➤ Clinical NICS usage: >50000 tests from ~230 centers in the past 5 years as a supplement to PGTA.
- For all IVF cycles? Probably not for now.
- ➤ For patients with increased risk of embryo anneuploidy (in China, ≥2 failed implantations and ≥1 miscarriage, or >35 maternal age)
- ➤ Reanalyze frozen embryos (D5 thawed for 6-8 hours, <5% no call, >93% concordance)
- > For embryos with poor morphology
- > Embryo biopsy limited by expertise or regulation.

Limitations and Future directions

- Accuracy: Susceptible to sample contamination (cumulus, polar body, external contaminations): recommend to check SNP, especially for embryos with euploid results.

 NOT a diagnostic test as of now.
- Sensitivity: D5 no call rate: ~10-15%, ~80% concordance, D6 embryos are more accurate, <5% no call rate, ~90% concordance... But should D5 embryos be cultured to D6?
- > Standardization: automation
- > PGTM and PGTSR?
- ➤ Need more research on the origin of contamination. (methylation? SNP? transcriptomics?)

Acknowledgements

- ➤ Prof. X. Sunney Xie of Harvard University and Peking University
- > Prof. Jie. Qiao and ESNi-PGT Clinical Trial Project Team
- > Dr. Catherine Racowsky of Brigham and Women's Hospital, Harvard University
- > Dr. Cai Liyi of Hebei Maternity Hospital
- > Dr. Yao Bing of Eastern Theater Command General Hospital
- > Dr. Wang Xiuxia of Shengjing Hospital, Shenyang
- >

