From Here to Fertility: Preconception Genetic Testing for The Infertile Couple

Alice Weeks Genetic Counselling Manager No. 1 Fertility Melbourne Australia

Background

- Preconception genetic screening can vary significantly between countries, clinics and clinicians, impacting PGT pathways
- Many infertile couples are not routinely offered relevant preconception genetic testing options
- Clinical guidelines and recommendations vary regarding preconception genetic testing
- <u>Objective</u>: To highlight the clinical utility of baseline karyotype analysis and importance of routine reproductive genetic carrier screening to the infertile couple seeking ART treatment

Preconception test types

Reproductive Genetic Carrier Screening (RGCS)

- Identifies carriers of genetic disorders within the general population 0
- Helps assess the risk of passing on genetic conditions to offspring

Karyotypes

- Examination of chromosomes to detect abnormalities
- Aids in diagnosing genetic disorders and infertility issues

Targeted Investigations

- Tailored tests based on clinical presentation
- Examples:
 - Y chr microdeletions for non-obstructive azoospermia
 - CFTR for non-obstructive azoospermia
 - FXS for Primary Ovarian Insufficiency (POI)

Reproductive genetic carrier screening

- Currently widely accessible in Australia
- The Australian Government introduced health care rebates for carrier screening of 3 genes (CF, SMA, FXS) for reproductive females from November 1, 2023, improving accessibility and awareness
- This has led to a higher occurrence of carrier and at-risk couple findings
- Research indicates that 2-4% of couples undergoing expanded panel screening may receive elevated risk outcomes, varying based on the gene panel and variant interpretation

Karyotype analysis

- Commonly accepted indication: 3+ miscarriages (some variability)
- Traditional approach assumes conception capacity
- Overlooks balanced rearrangements hindering conception

> Patients with balanced rearrangements struggle to conceive > Estimated 0.3-0.5% in general population > Karyotype analysis often delayed until multiple failed transfers (RIF) or miscarriages (RPL)

Karyotypes as routine pre-treatment investigation

- Ensures early detection and tailored interventions
- Underscores importance of systematic screening
- Australian-specific experience: Cost of karyotype analysis is covered/significantly subsidised by Medicare

What do the international guidelines say?

Indications and management of preimplantation genetic testing for monogenic conditions: a committee opinion

Practice Committee and Genetic Counseling Professional Group of the American Society for Reproductive Medicine, American Society for Reproductive Medicine, Washington, D.C.

Genetic carrier screening

Management of women with premature ovarian insufficiency Human Reproduction Open, pp. 1–15, 2021 doi:10.1093/hropen/hoaa063

> human reproduction ESHR open

ESHRE PAGES

The ethics of preconception expanded carrier screening in patients seeking assisted reproduction

Guido de Wert ()^{1,*,†}, Sanne van der Hout ()^{1,†}, Mariëtte Goddijn², Rita Vassena ()³, Lucy Frith ()⁴, Nathalie Vermeulen ()⁵, Ursula Eichenlaub-Ritter⁶, on behalf of the ESHRE Ethics Committee[‡]

Diagnosis and treatment of infertility in men: AUA/ASRM guideline part I

Peter N. Schlegel, M.D.,^a Mark Sigman, M.D.,^b Barbara Collura,^c Christopher J. De Jonge, Ph.D., H.C.L.D.(A.B.B).,^d Michael L. Eisenberg, M.D.,^e Dolores J. Lamb, Ph.D., H.C.L.D.(A.B.B).,^f John P. Mulhall, M.D.,^g Craig Niederberger, M.D., F.A.C.S.,^h Jay I. Sandlow, M.D.,ⁱ Rebecca Z. Sokol, M.D., M.P.H.,^j Steven D. Spandorfer, M.D.,^f Cigdem Tanrikut, M.D., F.A.C.S.,^k Jonathan R. Treadwell, Ph.D.,¹ Jeffrey T. Oristaglio, Ph.D.,¹ and Armand Zini, M.D.^m

^a New York Presbyterian Hospital-Weill Cornell Medical College; ^b Brown University; ^c RESOLVE; ^d University of Minnesota School of Medicine; ^e Stanford University School of Medicine; [†] Weill Cornell Medical College; ^g Memorial-Sloan Kettering Cancer Center; ^h Weill Cornell Medicine, University of Illinois-Chicago School of Medicine; [†] Medical College of Wisconsin; ^j University of Southern California School of Medicine; ^k Georgetown University School of Medicine; ^l ECRI; and ^m McGill University School of Medicine

The Royal Australian and New Zealand College of Obstetricians and Gynaecologists Excellence in Women's Health

Evaluation and treatment of recurrent pregnancy loss: a committee opinion

The Practice Committee of the American Society for Reproductive Medicine American Society for Reproductive Medicine, Birmingham, Alabama

Recurrent Pregnancy Loss

Guideline of European Society of Human Reproduction and Embryology

Update 2022 ESHRE Recurrent Pregnancy Loss Guideline Development Group

· Genetic or acquired conditions that predispose to diminished ovarian reserve (e.g., chemotherapy, radiation exposure, FMR1 premutation) An evaluation may also be indicated in some women who do not have infertility to optimize assisted reproductive technology treatments for other indications, such as recurrent pregnancy loss or genetic carrier status of an individual or couple where preimplantation genetic testing (for aneuploidy, monogenic disorders, and structural chromosomal rearrangements) is warranted. A fertility evaluation before treatment in these situations is useful.

2023

Unexplained infertility Guideline Development Group

Developed in collaboration with the Monash University led NHMRC Centre of Research Excellence in Women's Health in Reproductive Life (CREWHIRL).

Recommendation

Genetic or genomic tests are currently not recommended in couples with unexplained infertility.

ESHRE good practice recommendations on recurrent implantation failure[†]

ESHRE Working Group on Recurrent Implantation Failure, D. Cimadomo 🝺 ¹, M.J. de los Santos 🐌 ², G. Griesinger 📵 ^{3,4}, G. Lainas 🗊 ⁵, N. Le Clef 📵 ⁶, D.J. McLemon 🔞 ⁷, D. Montjean 🔞 ⁸, B. Toth⁹, N. Vermeulen 🔞 ⁶, and N. Macklon 🔞

Published Online 19 June 2023 DOI: 10.1111/1471-0528.17515

RCOG GREEN-TOP GUIDELINES

Green-top Guideline No. 17

Lesley Regan | Rajendra Rai | Sotirios Saravelos | Tin-Chiu Li | on behalf of the Royal College of Obstetricians and Gynaecologists

Recurrent implantation failure: reality or a statistical mirage? **Consensus statement from the July 1, 2022** Lugano Workshop on recurrent implantation failure

(The writing group) for the participants to the 2022 Lugano RIF Workshop, Paul Pirtea, M.D., a Marcelle I. Cedars, M.D., b Kate Devine, M.D., C Baris Ata, M.D., M.Sc., d,e Jason Franasiak, M.D., Catherine Racowsky, Ph.D.,^a Jim Toner, M.D., Ph.D.,^g Richard T. Scott, M.D.,^f Dominique de Ziegler, M.D.,^a

Diagnosis and treatment of infertility in men: AUA/ASRM guideline part I

Peter N. Schlegel, M.D.,^a Mark Sigman, M.D.,^b Barbara Collura,^c Christopher J. De Jonge, Ph.D., H.C.L.D.(A.B.B)., d Michael L. Eisenberg, M.D., Dolores J. Lamb, Ph.D., H.C.L.D. (A.B.B)., ^f John P. Mulhall, M.D.,⁹ Craig Niederberger, M.D., F.A.C.S.,^h Jay I. Sandlow, M.D., Rebecca Z. Sokol, M.D., M.P.H., Steven D. Spandorfer, M.D., Cigdem Tanrikut, M.D., F.A.C.S., k Jonathan R. Treadwell, Ph.D., Jeffrey T. Oristaglio, Ph.D., and Armand Zini, M.D.^m

^a New York Presbyterian Hospital-Weill Cornell Medical College; ^b Brown University; ^c RESOLVE; ^d University of Minnesota School of Medicine; ^e Stanford University School of Medicine; [†] Weill Cornell Medical College; ^g Memorial-Sloan Kettering Cancer Center; ^h Weill Cornell Medicine, University of Illinois-Chicago School of Medicine; [†] Medical College of Wisconsin; ^j University of Southern California School of Medicine; ^k Georgetown University School of Medicine; ¹ ECRI; and ^m McGill University School of Medicine

Human Reproduction Open, 2023, 2023(3), hoad023

https://doi.org/10.1093/hropen/hoad023

ESHRE Pages

Fertility evaluation of infertile women: a committee opinion

Practice Committee of the American Society for Reproductive Medicine

American Society for Reproductive Medicine, Birmingham, Alabama

TABLE 3

Infertility tests that should not be routinely ordered, unless specifically indicated (33).

- Laparoscopy for unexplained infertility
- Advance sperm function testing
- (e.g., DNA fragmentation testing) Postcoital testing
- Thrombophilia testing
- immunologic testing
- Karyotype Endometrial biopsy
- Progesterone
- Estradiol
- Follicle-stimulating hormone
- Luteinizing hormone
- ASRM. Fertility evaluation of infertile women. Fertil Steril 2021.

Unexplained infertility

Guideline of European Society of Human Reproduction and Embryology

Strong

000⊕

International Guidelines : Carrier screening

	Targeted	
ASRM	Yes (CF/FMR1)	
ESHRE	Yes (FMR1)	(พ
FSANZ	Yes	
ACOG	Yes	
RANZCOG	Yes (ethnic)	

No comment

Yes vith ethical caution)

Yes

Yes

Yes (shared HGSA)

International Guidelines : Karyotypes

	RPL	RIF	Infertility
ASRM	Yes	No comment	No
ESHRE	Yes	Yes	No
FSANZ	Yes	Yes	No comment
ACOG	Yes	No comment	No (shared ASRM)
RANZCOG	Yes (shared RCOG)	No comment	No comment

The experience at No.1 Fertility

Retrospective cohort study at No.1 Fertility

Duration: Data collected from 2018 to 2023 (n=293)

Main Cohorts:

- Patients seeking PGT-SR
- Patients seeking PGT-M 0

Analysis Methods:

- Descriptive statistics for variation measures
- Chi-square test for proportions (P < 0.05 significance level)

Indications for PGT-M (n=164)

Indications for PGT-SR (n=129)

45,XX,der(13;14)(q10;q10)	routine karyotype	46,XY,t(4;13)(q31.2;q21.2)	personal history
46,XX,t(12;14)(q22;p10)	affected pregnancy/child	46,XX,t(4;8)(q23;q21.2)	routine karyotype
46,XX,t(2;9)(q32.2;q32)	personal history	46,XX,t(5;17)(q33.3;p12)	routine karyotype
46,XX,t(2;7)(q13;p13)	personal history	46,XY,t(2;17)(p23;q11.2)	routine karyotype
46,XY,t(8;10)(p23.3;p11.2)	routine karyotype	46, XX, t(3;9)(q25.3;q13)	family history
45,XY,der(13;14)(q10;q10)	family history	46,XY,t(15;18)(q26.3;q12.1)	affected pregnancy/child
46,XY,t(1;5)(q21;q13.1)	personal history	46,XY,t(3;4)(q26.2;q33)	personal history
46,XX,t(9;15)(p24;q21.3)	personal history	46,XX,t(19;22)(q13.3;q11.2)	personal history
45,XY,der(13;14)(q10;q10)	routine karyotype	46,XY,t(4;9)(q27;q22.3)	personal history
46,XX,t(4;8)(p12;q24.1)	personal history	45,XY,der(13;14)(q10;q10)	family history
45,XY,rob(13;14)(q10;q10)	family history		
46,XY,t(3;11)(p25;p15.3)	routine karyotype	46,XX,inv(5)(q22;q31.1)	routine karyotype
45,XY,der(13;14)(q10;q10)	personal history	45,XY,der(13;14)(q10;q10)	routine karyotype
46,XY,t(9;15)(q32;q25)	routine karyotype	46,XX,t(12;20)(q24.1;p13)	personal history
		45,XX,der(13;14)(q10;q10)	routine karyotype
46,XX,t(3;6)(q25.3;q21)	routine karyotype	46,XX,t(4;9)(q25;q32)	routine karyotype
45,XX,der(13;14)(q10;q10)	personal history	46,XX,t(2;11)(q11.2;q13.3)	routine karyotype
46,XX,t(7;11)(q32;p13)	routine karyotype	46,XX,t(8;11)(q24.13;q23.3)	personal history
46,XX,t(1;10)(q32.3;q22.3)	routine karyotype	46,XX,t(4;9)(q31.3;p24)	personal history
46,Y,t(X;10)(q27;q24.3)	personal history	46,XY,t(9;20)(p22,p12.2)	personal history
46,XX,t(5;7)(q35.1;q32)	routine karyotype	46,XY,t(6;9)(p21.1;q21.2)	routine karyotype
46,XX,t(4;18)(q31.23;q21.2)	affected pregnancy/child	46,XY,t(11;20)(p11.2;q13.3)	routine karyotype
46,XX,t(7;18)(p13;q21.1)	personal history	46,XX, t(2;18)(p10;q10)	routine karyotype
46,Y,t(X;4)(p11.23;p14)	personal history	46,XY,t(9;20)(q34.2;q11.1)	personal history
		46,XX,t(1;10)(p13.3;p13)	routine karyotype
46,XY,t(19;21)(q12;p12)	personal history		
46,XX,der(13;14)(q10;q10)	personal history	46,XX,t(3;9)(q25.3;q13)	personal history
46,XX,t(11;19)(p15.5;p13.1)	personal history	46,XY,t(6;22)(q12;q11.21)	personal history
46,XX,t(5;14)(q11.2;q11.2)	routine karyotype	46,XY,t(2;20)(q13;p13)	routine karyotype
46,XX,inv(3)(p25q23)	personal history	45,XY,der(13;14)(q10;q10)	personal history
46,XY,inv(17)(p11.2q21.3)	routine karyotype	46,XY,t(1;4)(q24;q28)	routine karyotype
46,XX,t(12;16)(q24.33;q11.1)	routine karyotype	45,XY,der(13;14)(q10;q10)	routine karyotype
46,XY,t(14;22)(q13;q13.3)	routine karyotype	46,XX,t(10;13)(p12.2;q14.3)	routine karyotype
45,XY,der(13;15)(q10;q10)	routine karyotype	46,XY,t(11;22)(q23.3;q11.2)	routine karyotype
45,XY,der(13;14)(q10;q10)	routine karyotype	46,XX,t(19;22)(q13.3;q12.2)	personal history
46,XY,t(4;13)(q31.2;q21.2)	personal history	46,XX,t(2;17)(q21.1;q23.1)	routine kayrotype
		45,XY,der(14;21)(q10;q10)	routine karyotype

Mosaic - 46,X,del(X)(p22.1)[24	routine karyotype
45,XX,der(13;14)(q10;q10)	routine karyotype
46,XX,inv(10)(q22.1q25.2)	routine karyotype
46,XX,t(3;14)(p22.2;q32.1)	personal history
45,XX,der(14;15)(q10;q10)	routine karyotype
46, XX,t(5;6)(q33.3;q23.3)	routine karyotype
46,XY,t(3;6)(q21;p23)	routine karyotype
46,XX,t(3;6)(q21;p25)	routine karyotype
46,XY,t(8;9)(q21.2;q21.2)	routine karyotype
46,XY,t(9;20)(q34.3;p11.2)	family history
46,XX,t(3;4)(p13;q21.1)	routine karyotype
46,XX,t(2;18)(q33;q21.1)	routine karyotype
46,XY,t(17;22)(q11.2q11.2)	personal history
46,XX,t(8;29)(q24.22;p13.3)	routine karyotype
45,XX,der(13;14)	personal history
46,XY,t(9;19)(q34.1;q13.1)	routine karyotype
46, XX, t(4;20)(q21.1;p11.2)	routine karyotype
Mosaic - 46,XY,t(16;22)(q24;q1	routine karyotype
46 XY t(6:20)(p12:g12	routine karvotype

46,XY,t(6;20)(p12;q12	routine karyotype
46,XX,t(1;17)(p34.1;p12)	routine karyotype
46,XX,inv(2)(p15q23)	routine karyotype
46,XY,t(1;11)(p36.2;q24.2)	routine karyotype
45,XY,der(13;14)(q10;q10)	routine karyotype
46,XY,t(9;10)(q22.3;q24.1)	routine karyotype
46,X,t(X;18)(q28;p11.2)	affected pregnancy/child
45,XX,der(13;15)(q10;q10)	routine karyotype

46,XY,t(9;13)(q31;q22)	routine karyotype
46,XY,t(6;9)(q25.1;q32)	routine karyotype
46,XY,t(8;21)(p21.1;q22.1)	routine karyotype
46,XX,t(11;20)(q23.3;p12.1)	affected pregnancy/child
46,XY,t(6;20)(p21.3;q11.2)	routine karyotype
46,XY,inv(4)(p14q12)	routine karyotype
46,XY, t(5;9)(q35.3;q22.1)	routine karyotype
46,XY,inv(3)(p24.1p14.3)	routine karyotype

Conclusions

- Karyotypes and Genetic Carrier Screening are vital preconception genetic tests for infertile couples exploring reproductive pathways
- Karyotype analysis should be considered as a baseline investigation for infertility
- Results from karyotypes and genetic carrier screening can drastically change the reproductive journey for these patients
 - through the identification of additional or alternate PGT options
 - may also offer a probable cause for infertility, which can be beneficial for providing 0 closure to patients seeking reproductive treatment

Acknowledgements

No1 Fertility

Genetic counselling team, special thanks to Cheryl Tse Kelli Sorby, Scientific Director

CooperGenomics

Victorian Clincial Genetics Services Genetic carrier screening laboratory Reproductive genetic counselling team

Terima Kesih

R

Alice Weeks alicew@number1fertility.com genetics@number1fertility.com number1fertility.com

