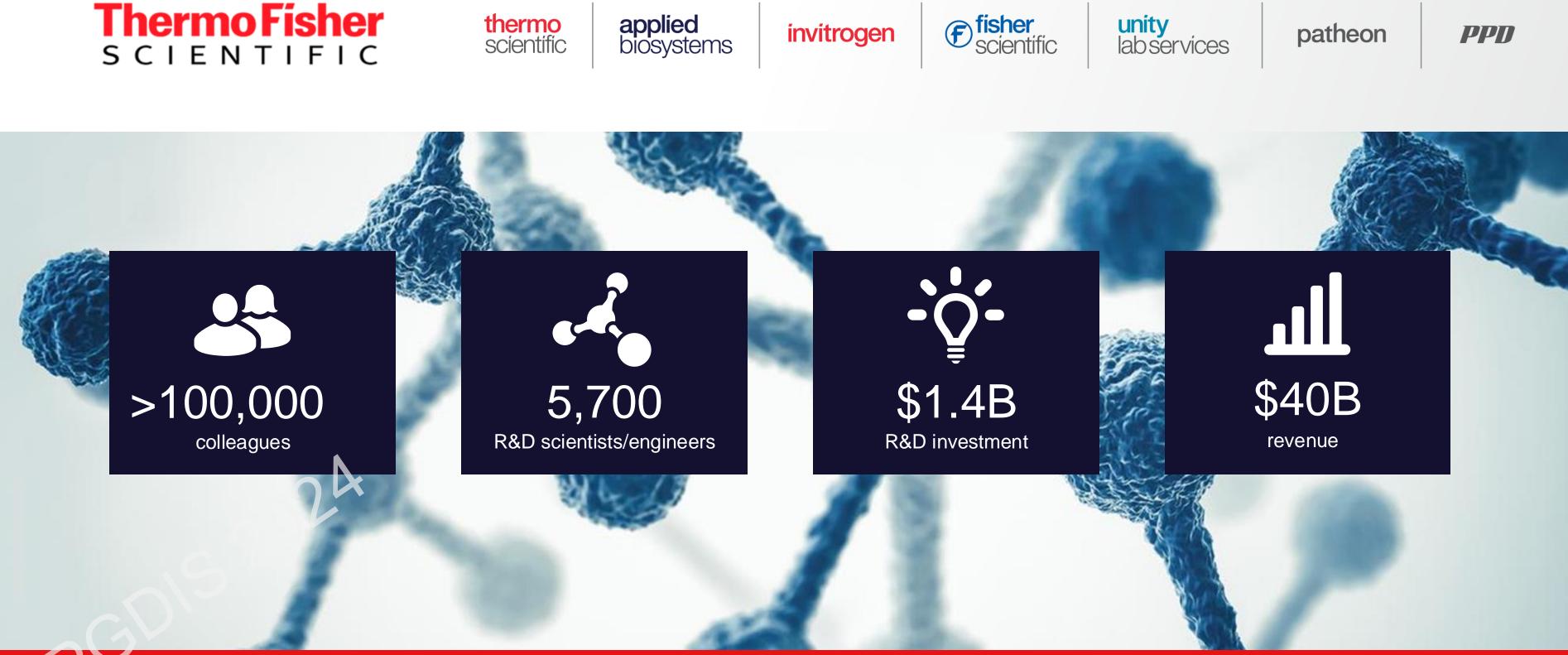

Advancing PGT-A: Integrating SNP Panel Results for Trisomy Detection, Contamination Assessment, and Sample Mix-Up Verification

Alok Tomar, Ph.D.


Senior Manager Product Management, May 2024

The world leader in serving science

© 2024 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. For Research Use Only. Not for use in diagnostic procedures. Image property of Thermo Fisher Scientific.

World leader in serving science

We enable our customers to make the world healthier, cleaner and safer

patheon

Our Mission is our purpose

We enable our customers to make the world healthier, cleaner and safer

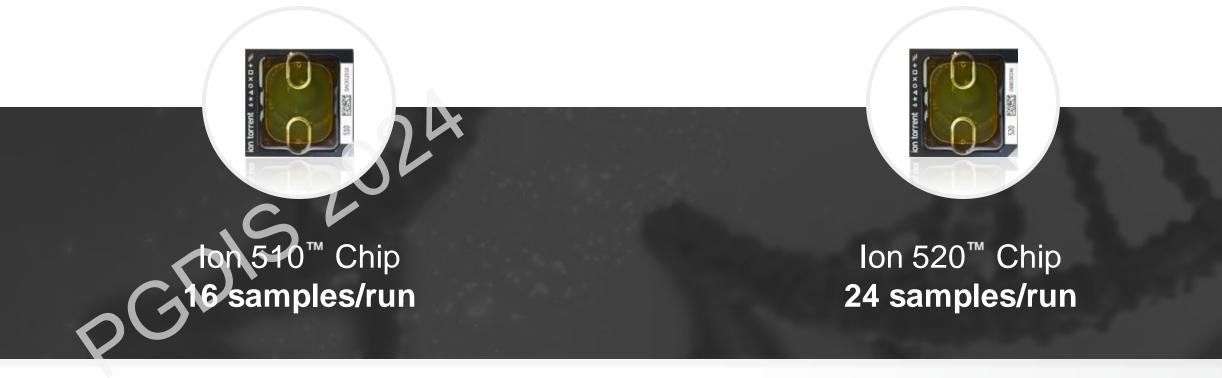
Complete solution for aneuploidy detection by low-pass genome sequencing

Starting from a biopsy sample of 1–10 cells

Flexible—multiplexing of 16–96 samples/run

Simple—plug-and-play instrumentation

Ion ReproSeq PGS Kits for Ion GeneStudio S5 Systems


Three kit configurations support sample scalability of 16, 24, and 96 samples per run

Detection of whole-chromosome aneuploidies and chromosome-arm copy number events in as little as 10 hours

Ion SingleSeq[™] library kit includes reagents to extract, amplify, and prepare barcoded libraries from a single cell

lon 530[™] Chip **96 samples/run**

Advancing Through Innovation:Premium PGT-A on Genexus™

Scalability with improved performance and higher throughput

6

Ion ReproSeq PGS kits for Genexus[™] Integrated Sequencer

Two kit configurations enable **scalable sample processing:** 96 or 192 samples per run

Flexible chip design to **support variable sample intake**, minimizing batching requirements

Expanded barcode kits for extracting, amplifying, and preparing libraries of up to 384 samples, minimizing cross-contamination.

- Four-lane design accommodates sample intake variability with ease
- Cost-effective runs achieved by simultaneous processing of 1-4 lanes
- Enables rapid results by minimizing the need for batching

hip ity with ease g of 1-4 lanes ng

Analyze results with Genexus™ Software

Achieve aneuploidy calls with just a few clicks

Integrated

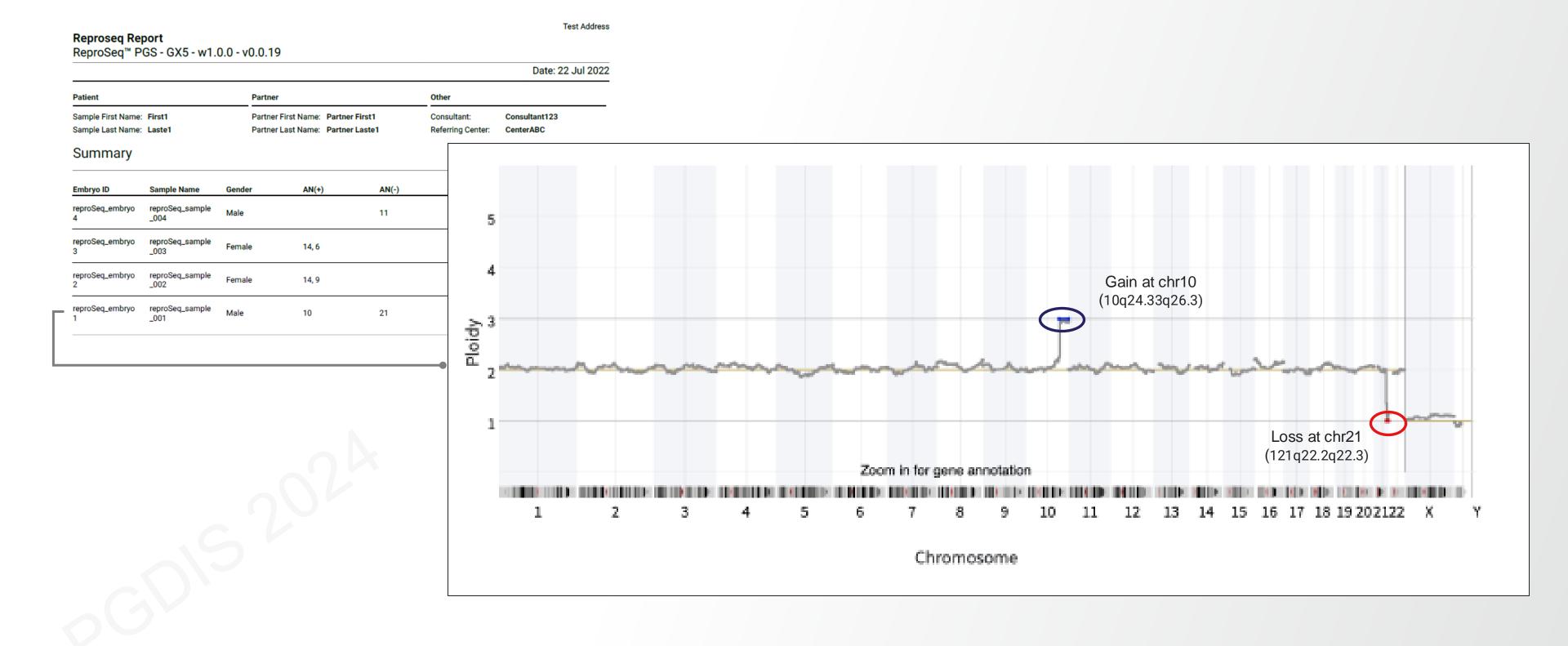
Comprehensive PGT-A solution: seamlessly plan, monitor, track runs, analyze data, and generate personalized reports

Easy to use

Simplified user experience can reduce learning curve and human errors

Accurate

Tunable aneuploidy detection with preconfigured analysis workflows


Flexible

Option to choose between integrated analysis on instrument or analysis on another system through API

Thermo Fisher

Analysis 1, Proband Demo Aneuploidy_52ReproSeqLowPassWholeGenomeAneuploidy, Demo Aneuploidy 118 (anterce terre) 2	
	Gaina/Losses
	# + OD 3/0 ED Day MA An(+) An(+) MAPD
	1 2 0.001014,15 15 8.135
and the second state from the second state of	2 2 0.001014,1313 6.135
 A substitute in the second se Second second s	3 BaCheNend 0.0016 14,15 13 6,136
· · · · · · · · · · · · · · · · · · ·	4 3 0.0018 1,14 13 0.138
	CA,Y
Analysis 2, Proband:Demo Aneuploidy_ReproSecPGSw1.1, Demo Aneuploidy	5 3 5.00078X Y 8.104
	In + Out - Reset Pin Back
	Search: example: ctv1.1-100000
Analysis 3, Proband Demo Aneuploidy_ReproSeqNoGenderPGSw1.1, Demo Aneuploidy	
1176 Confidence Marris 8	7 1 1 1 1 1
~~	
where we	
a the second sec	
Analysis 4, Proband Demo Aneuploidy ReproSeqMosaicPGSw1.1, Demo Aneuploidy	0 0 0 0 0 0.
	Confidence filter:
~~	
	Mapd filter:
Analysis 5, Proband Mosaic, 40SingleSeq, 065, BC49, ReproSeqMosaicPGSw1, 1, Mosaic, 40SingleSeq, 065, BC49	0.3
d. Det Condense Rein 1.0	Film
	EMEspot. *
	5.**

Ion ReproSeq[™] PGS kit Sample Report

Thermo Fisher S C I E N T I F I C

Unlocking Insights: SNP based Ion AmpliSeq[™] Polyploidy Panel Kit

Unlock genomic variations unique to each embryo sample

Enhance PGT-A analysis (using Ion ReproSeq PGS kits) with Polyploidy panel for germline SNP detection

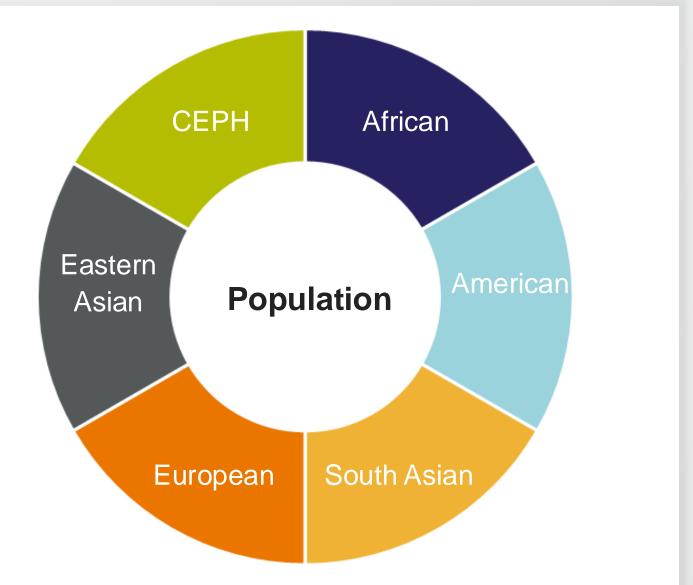
Single pool that provides comprehensive coverage of **>500 SNP sites**:

- 74 microhaplotype amplicons for 222 SNP sites used in human identification
- 368 single-SNP amplicons for population-wide representation based on minor allele frequencies in the 1000 Genomes Project [1] and screened for representation in Ion SingleSeq[™] whole-genome amplification products

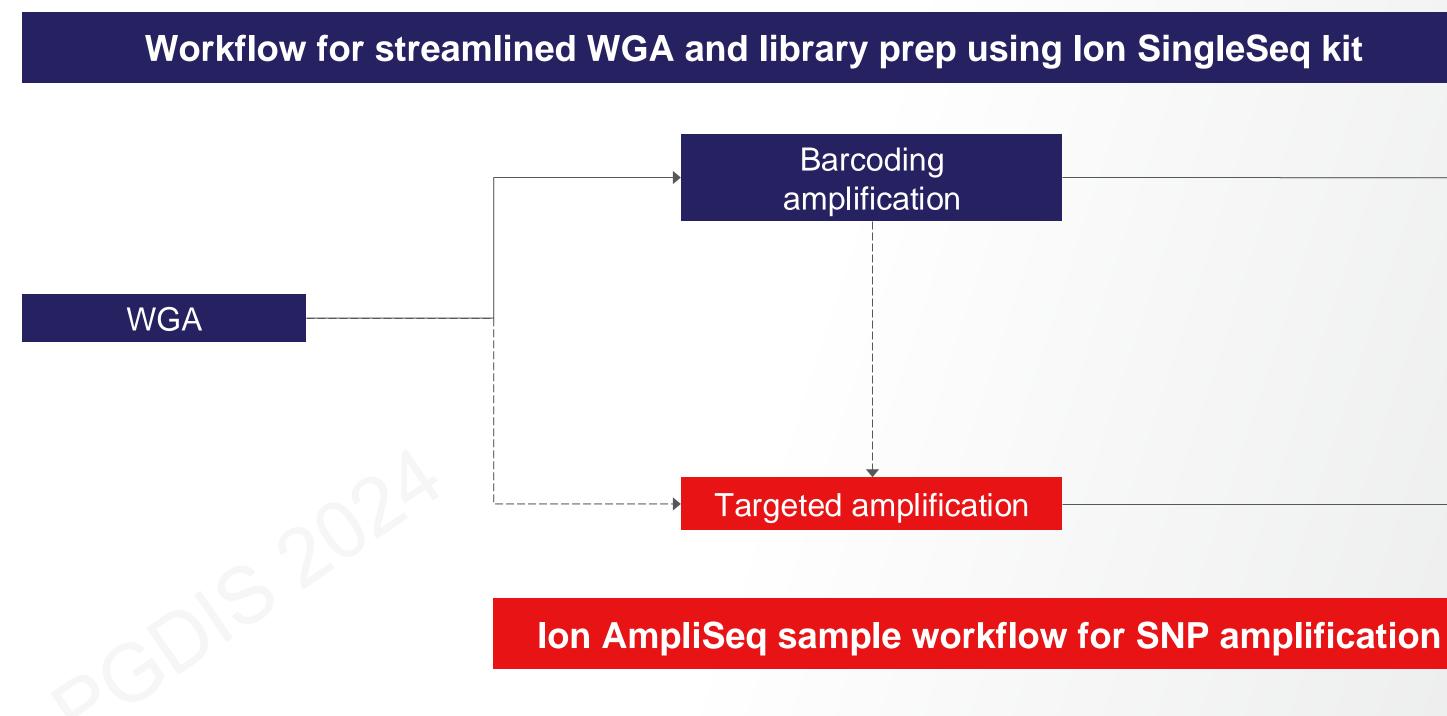
1. 1000 Genomes Project Consortium, Auton et al. A global reference for human genetic variation. Nature. 2015;526(7571):68-74. doi:10.1038/nature15393

Minor allele frequencies in the **1000 Genomes Project**

Ion AmpliSeq[™] Polyploidy Panel Kit



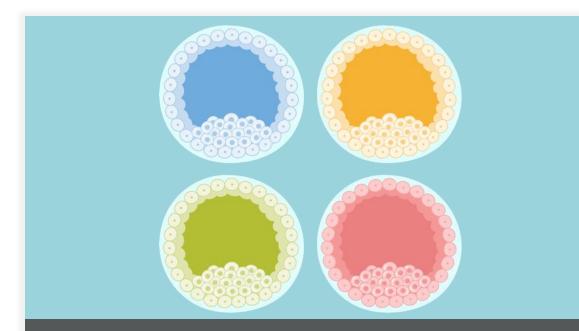
Polyploidy panel is compatible with both the Genexus[™] and GeneStudio platforms



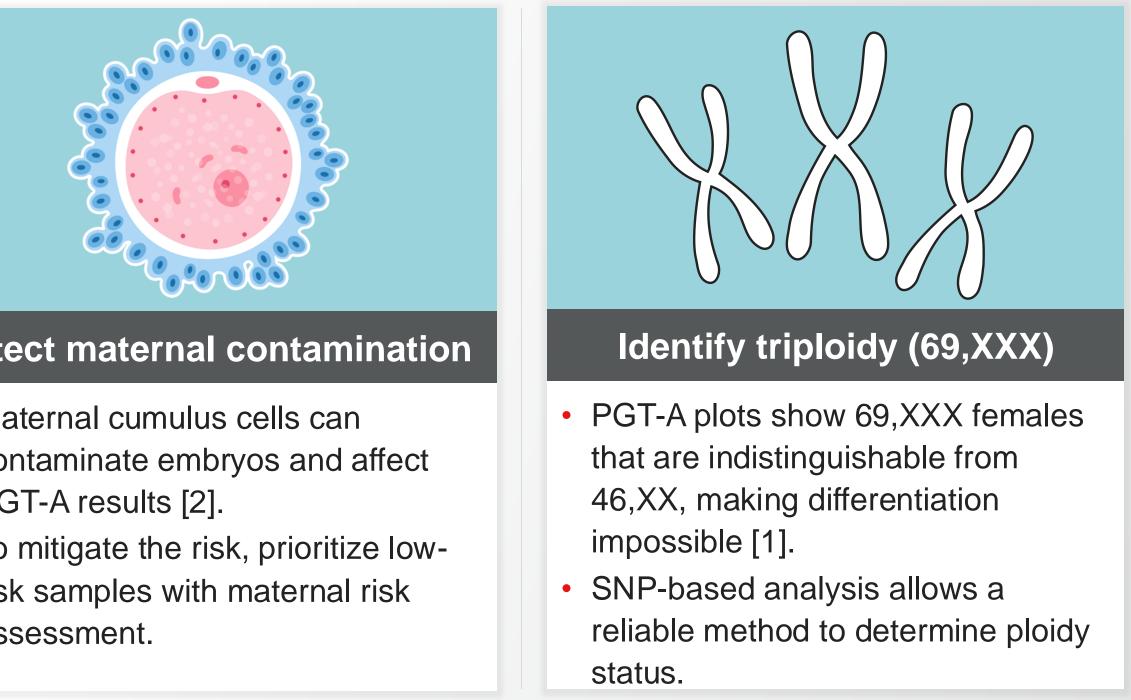
Minor allele frequencies in the 1000 Genomes Project

Library prep from a single sample

A single sample input for Ion ReproSeq PGS Kit and Ion AmpliSeq Polyploidy Panel Kit



SNP-based QC


Raising the Bar: Delivering Premium PGT-A Analysis

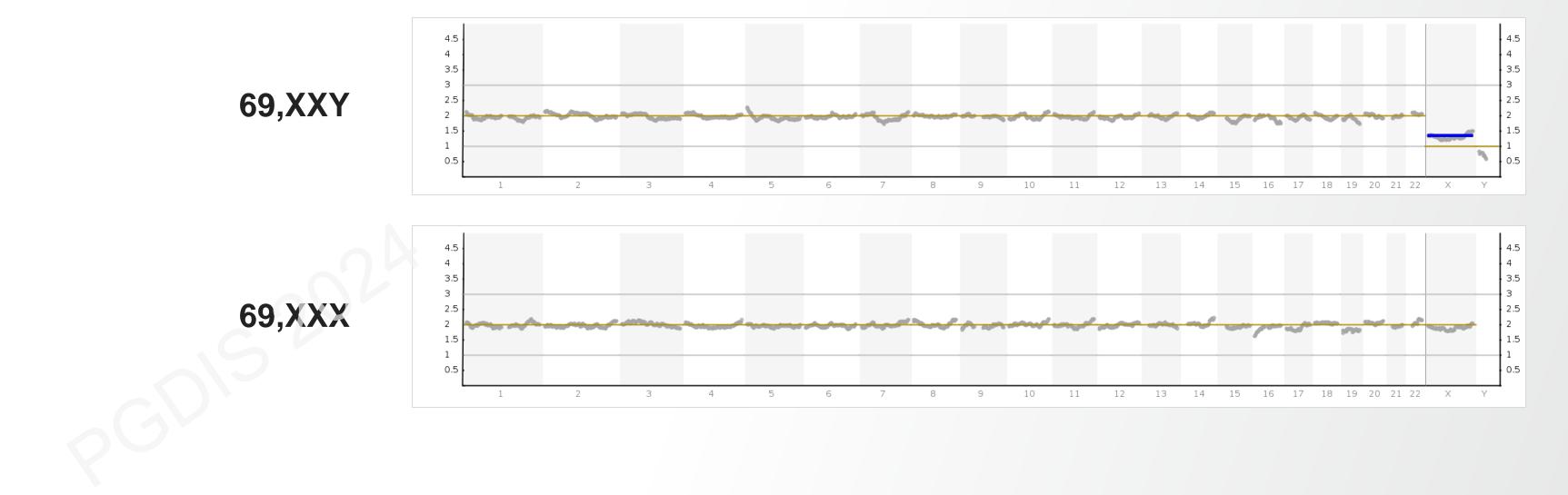
Enhancing Quality Control: Optional SNP-Based Testing for Ion ReproSeq PGS Kits

Prevent sample mix-up

- Accurate sample identification is crucial in PGT-A to prevent embryo mix-ups.
- Sibling QC can reduce the risk of sample mix-ups and improve the accuracy of PGT-A testing.

Detect maternal contamination

- Maternal cumulus cells can contaminate embryos and affect PGT-A results [2].
- To mitigate the risk, prioritize lowrisk samples with maternal risk assessment.

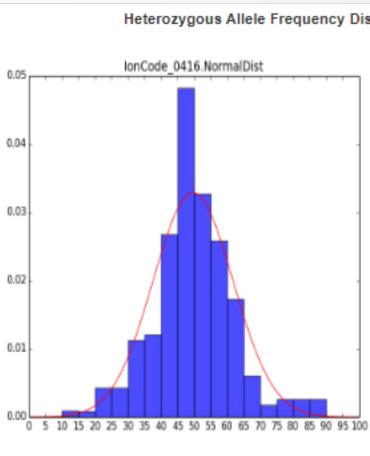

^{1.} Hammond et al. Characterizing nuclear and mitochondrial DNA in spent embryo culture media: genetic contamination identified. Fertil Steril. 2017 Jan;107(1):220-228.e5. doi: 10.1016/j.fertnstert.2016.10.015.

^{2.} ESHRE PGT-SR/PGT-A Working Group; Coonen E, Rubio C, Christopikou D, Dimitriadou E, Gontar J, Goossens V, Maurer M, Spinella F, Vermeulen N, De Rycke M. ESHRE PGT Consortium good practice recommendations for the detection of structural and numerical chromosomal aberrations. Hum Reprod Open. 2020 May 29;2020(3):hoaa017. doi: 10.1093/hropen/hoaa017

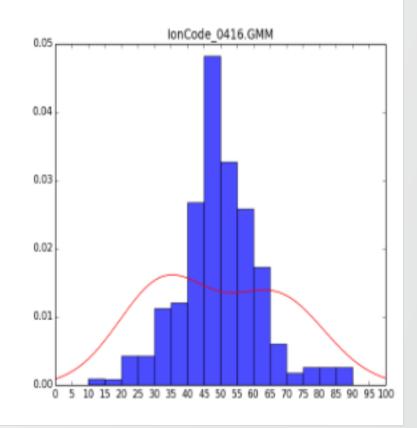
Information from SNP results

- Triploid Detection
 - 69,XXX females appear identical to 46,XX for PGT-A
- Maternal Contamination
 - Cumulus cells not stripped from the oocyte push PGT-A results toward normal

- Sibling QC •
 - •



Cross-check for sample mix ups


Triploid / diploid / haploid calling overview

- Allele frequencies of all heterozygous alleles are assessed
- Based on the similarity to bimodal vs. normal distribution, a call is made on the ploidy level.
 - Ploidies > 3 are not distinguished from triploid
- To be called Abnormal / Triploid, a sample must also have at least 3 triallelic sites and > 20% estimated contamination
- Haploids are called when a low proportion of heterozygous SNPs is detected

Polyploidy Report					
Polyploidy Status	Diploid				
Call confidence	High				
Hom allele calls	576				
Het allele calls used	232				
Hets AF mean	49.66				
Hets AF StdDev	12.15				
Shapiro test	Not Normal				
Normal vs. GMM	Diploid				
Assignment probability	Diploid				

Heterozygous Allele Frequency Distribution and Normality Assessment Metrics

Summary table – triploids and diploids

ReproSeqSnpAnalysis					Overall summary call Overrules to Normal when minimum 3 rd allele					
-	QC Ru	4-12 23:26 ↑ Summary: 12 assed SiblingC	2 Family Groups Spe QC.	ecified		Ploidy estimat on allele frequ				
Barcode	Name	Sample		Couple ID	SiblingQC	Status	Polyploidy	Contamination	Ploidy (
lonCode	_0101	T3_R01_NA01672	2_Triploid_O1_BC101_ori	NA01672	Pass	Abnormal	Triploid	High	High	
IonCode	_0102	T3_R01_NA01672	2_Triploid_O1_BC102_ori	NA01672	Pass	Abnormal	Triploid	High	High	
IonCode	_0103	T3_R01_NA01672	2_Triploid_O1_BC103_ori	NA01672	Pass	Abnormal	Triploid	High	Low	
lonCode	_0104	T3_R01_NA01672	2_Triploid_O1_BC104_ori	NA01672	Pass	Abnormal	Triploid	High	High	
IonCode	_0105	T3_R01_NA10013	3_Triploid_O1_BC105_ori	NA10013	Pass	Abnormal	Triploid	High	High	
lonCode	_0106	T3_R01_NA10013	3_Triploid_O1_BC106_ori	NA10013	Pass	Abnormal	Triploid	High	Low	
IonCode	_0107	T3_R01_NA10013	3_Triploid_O1_BC107_ori	NA10013	Pass	Abnormal	Triploid	High	High	
IonCode	_0108	T3_R01_NA10013	3_Triploid_O1_BC108_ori	NA10013	Pass	Abnormal	Triploid	High	High	
lonCode	_0109	T3_R01_NA13117	Diploid_O1_BC109_ori	Amish884	Pass	Normal	Diploid	None	High	
lonCode	_0110	T3_R01_NA13118	_Diploid_O1_BC110_ori	Amish884	Pass	Normal	Diploid	None	High	
IonCode	_0111	T3_R01_NA13121	1_Diploid_01_BC111_ori	Amish884	Pass	Normal	Diploid	None	High	
IonCode	_0112	T3_R01_NA13122	2_Diploid_O1_BC112_ori	Amish884	Pass	Normal	Diploid	None	High	
IonCode	_0113	T3_R01_NA12550	_Diploid_O1_BC113_ori	French66	Pass	Normal	Diploid	None	High	
IonCode	_0114	T3_R01_NA12551	1_Diploid_O1_BC114_ori	French66	Pass	Normal	Diploid	None	High	

s not met			
ased only ies		🖹 View Lo	og <u>前</u> De
Call Confidence	Contamination Level	MHAP 3rd	Alleles
	35.86%	6	
	53.33%	5	True triploids
	46.88%	5	appear also contaminated and
	40.68%	4	should have ≥ 3
	53.23%	10	MHAP 3^{rd} alleles and $\ge 20\%$
	44.11%	10	contamination
	48.51%	10	level
	56.75%	10	
	0.00%	0	
	12.62%	2	
	10.94%	1	
	16.98%	1	
	13.11%	1	
	0.00%	0	

Maternal contamination overview

- Based only on tri-allelic microhaplotype sites
 - Two embryo alleles where heterozygous + one non-inherited maternal allele
 - Only microhaplotype sites have more than one variant allele in the hotspot file •
- Minimum 3 sites must be tri-allelic (to distinguish from noise)
- Maternal contamination is estimated based on 2x mean of third allele frequencies
 - High contamination is $\geq 30\%$ •
 - Low contamination is ~5-29% •
 - Very high contamination (> 90%) will look like low or no contamination •
 - Running a maternal sample should reveal a high degree of relatedness with highly contaminated samples

Summary table – maternal contamination

20% and 30% contaminated samples compared to 0% and 100% (pure maternal)

ecuted At: 2023-04-11 10:22 🗢						inated sam so appear t	•	inloid	
SiblingQC Run Summary: 45 Family Groups Specified All samples passed SiblingQC.							Contamination given by this column		
Barcode Name	Sample	Couple ID	SiblingQC	Status	Polyploidy	Contamination	Ploidy Call Confidence	Contamination Level	MHAP 3rd Alleles
lonCode_0101	T4_R02_NA07018-NA06997_matcon-0pct_O4_BC101	T4_R02_NA07018-NA06997_matcon-0pct_O4_BC101	Pass	Normal	Diploid	None	High	0.00%	0
lonCode_0102	T4_R02_NA07018-NA06997_matcon-20pct_O4_BC102	T4_R02_NA07018-NA06997_matcon 20pct_O4_BC102	Pass	Abnormal	Triploid	High	Low	34.72%	9
onCode_0103	T4_R02_NA07018-NA06997_matcon-30pct_O4_BC103	T4_R02_NA07018-NA06997_matcon 30pct_O4_BC103	Pass	Abnormal	Triploid	High	High	32.78%	13
onCode_0104	T4_R02_NA07018-NA06997_matcon-100pct_O4_BC104	T4_R02_NA07018-NA06997_matcon-100pct_O4_BC104	Pass	Normal	Diploid	None	High	15.38%	1
onCode_0105	T4_R02_NA13120-NA13114_matcon-0pct_O4_BC105	T4_R02_NA13120-NA13114_matcon-0pct_O4_BC105	Pass	Normal	Diploid	None	High	0.00%	0
onCode_0106	T4_R02_NA13120-NA13114_matcon-20pct_O4_BC106	T4_R02_NA13120-NA13114_matcon-20pct_04_BC106	Pass	Normal	Diploid	Low	High	19.51%	9
onCode_0107	T4_R02_NA13120-NA13114_matcon-30pct_O4_BC107	T4_R02_NA13120-NA13114_matcon-30pct_O4_BC107	Pass	Contaminated	Diploid	High	High	29.83%	8
onCode_0108	T4_R02_NA13120-NA13114_matcon-100pct_O4_BC108	T4_R02_NA13120-NA13114_matcon-100pct_O4_BC108	Pass	Normal	Diploid	None	High	0.00%	0
onCode_0109	T4_R02_NA12565-NA12561_matcon-0pct_O4_BC109	T4_R02_NA12565-NA12561_matcon-0pct_O4_BC109	Pass	Normal	Diploid	None	High	0.00%	0
onCode_0110	T4_R02_NA12565-NA12561_matcon-20pct_O4_BC110	T4_R02_NA12565-NA12561_matcon 20pct_O4_BC110	Pass	Normal	Diploid	Low	High	22.33%	10
IonCode_0111	T4_R02_NA12565-NA12561_matcon-30pct_O4_BC111	T4_R02_NA12565-NA12561_matcon 30pct_O4_BC111	Pass	Abnormal	Triploid	High	High	28.36%	11

Sibling QC overview

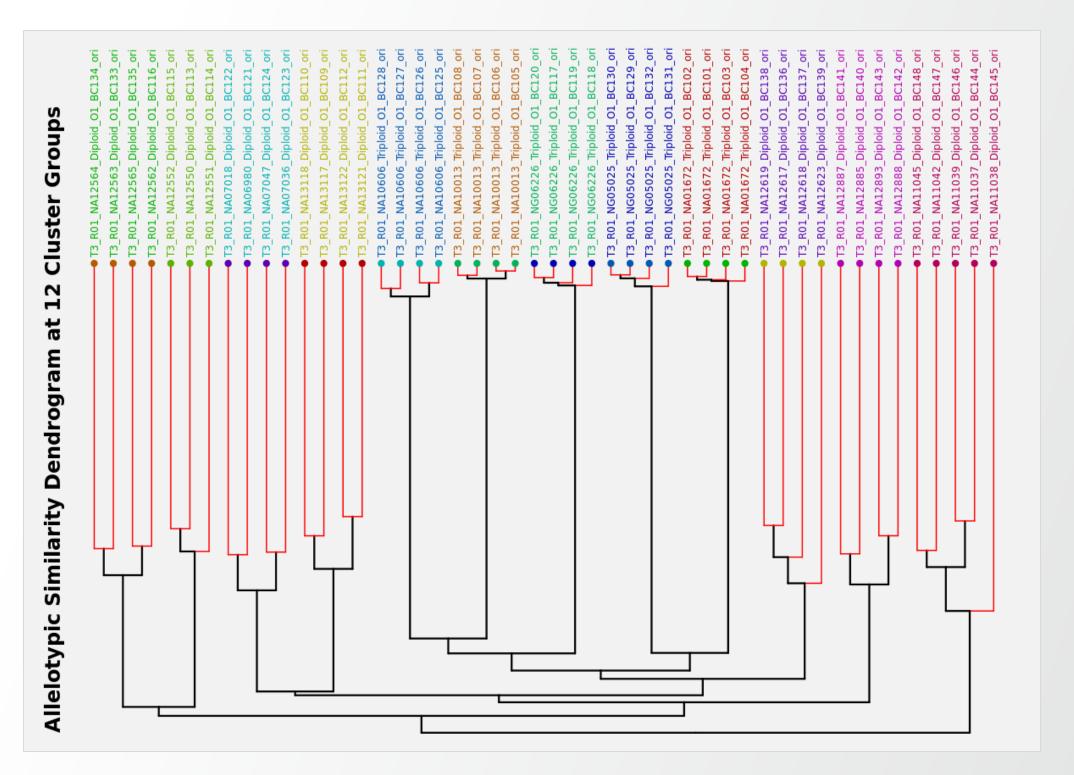
- SiblingQC uses CoupleID from sample attributes to determine number of expected families
- Clustering is performed based on allele similarities
 - Very poorly covered samples are excluded •
- The clusters are divided into the same number of groups as the expected number of families
- Alignment of clusters and expected groups determines Pass / Fail scores for samples

Summary table - SiblingQC

ReproSeqSnpAnalysis

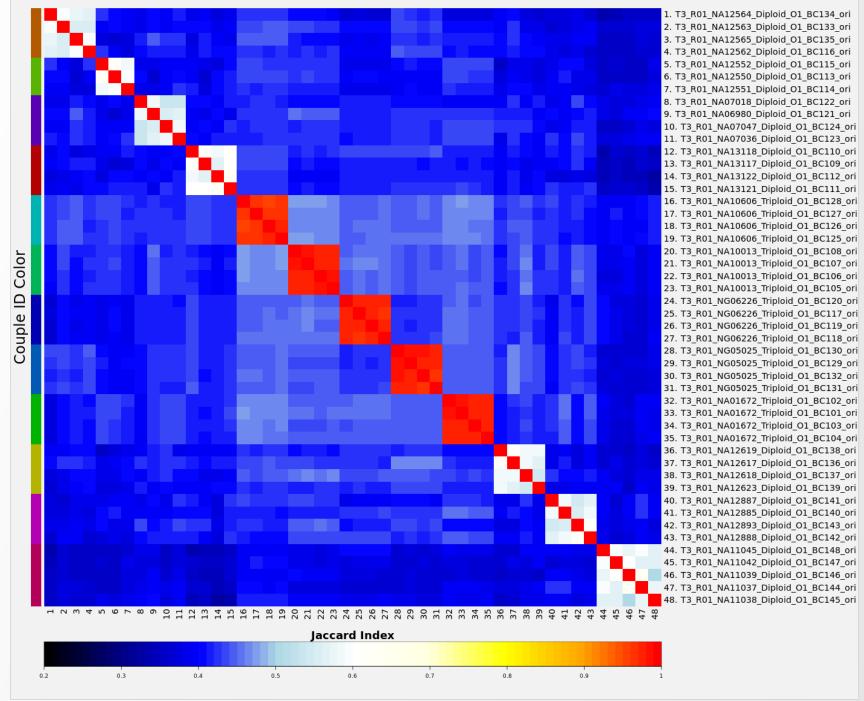
Executed At: 2023-04-12 23:26 ŧ

SiblingQC Run Summary: 12 Family Groups Specified All samples passed SiblingQC.


Barcode Name	Sample	Couple ID	SiblingQC	Status	Polyploidy	Contamination	Ploidy Call Confidence	Contamination Level	MHAP 3rd Alleles
IonCode_0101	T3_R01_NA01672_Triploid_O1_BC101_ori	NA01672	Pass	Abnormal	Triploid	High	High	35.86%	6
lonCode_0102	T3_R01_NA01672_Triploid_O1_BC102_ori	NA01672	Pass	Abnormal	Triploid	High	High	53.33%	5
IonCode_0103	T3_R01_NA01672_Triploid_O1_BC103_ori	NA01672	Pass	Abnormal	Triploid	High	Low	46.88%	5
lonCode_0104	T3_R01_NA01672_Triploid_O1_BC104_ori	NA01672	Pass	Abnormal	Triploid	High	High	40.68%	4
IonCode_0105	T3_R01_NA10013_Triploid_O1_BC105_ori	NA10013	Pass	Abnormal	Triploid	High	High	53.23%	10
IonCode_0106	T3_R01_NA10013_Triploid_O1_BC106_ori	NA10013	Pass	Abnormal	Triploid	High	Low	44.11%	10
IonCode_0107	T3_R01_NA10013_Triploid_O1_BC107_ori	NA10013	Pass	Abnormal	Triploid	High	High	48.51%	10
IonCode_0108	T3_R01_NA10013_Triploid_O1_BC108_ori	NA10013	Pass	Abnormal	Triploid	High	High	56.75%	10
IonCode_0109	T3_R01_NA13117_Diploid_O1_BC109_ori	Amish884	Pass	Normal	Diploid	None	High	0.00%	0
IonCode_0110	T3_R01_NA13118_Diploid_O1_BC110_ori	Amish884	Pass	Normal	Diploid	None	High	12.62%	2
IonCode_0111	T3_R01_NA13121_Diploid_O1_BC111_ori	Amish884	Pass	Normal	Diploid	None	High	10.94%	1
IonCode_0112	T3_R01_NA13122_Diploid_O1_BC112_ori	Amish884	Pass	Normal	Diploid	None	High	16.98%	1
lonCode_0113	T3_R01_NA12550_Diploid_O1_BC113_ori	French66	Pass	Normal	Diploid	None	High	1 3.11%	1
IonCode_0114	T3_R01_NA12551_Diploid_O1_BC114_ori	French66	Pass	Normal	Diploid	None	High	0.00%	0

🖹 View Log 前 De

Sibling similarity dendrogram


- Couple ID values assigned to the samples define either sibling sets (diploid samples) or technical replicates (triploid samples)
- The 12 clusters generated based on the data match the expected groupings
- Note high similarity of technical replicates based on distance to node

Sibling similarity heatmap

- Degrees of similarity between all possible sample pairs are shown by a heatmap
- White (≈ siblings) or red (≈ identical) clusters align with Couple ID color assignments on the far left

Thermo Fisher

Allelotypic Similarity Heatmap

Ion Torrent[™] NGS systems for Ion ReproSeq[™] PGS kits

Which system is the best fit for your lab?

Genexus[™] Integrated Sequencer

- Analyze more PGT-A samples per run
- Leverage a simplified workflow that seamlessly integrates SNP-based QC
- Save space with an all-in-one instrument
- Readily expand beyond reproductive health

Simplify and scale your PGT-A workflow with an all-in-one NGS system

- Readily expand into reproductive health applications like combined PGT-A/PGT-M and expanded carrier screening
- Flexibly configure your own system with an Ion GeneStudio[™] S5, Plus, or Prime System
- Easily add plug-ins for custom NGS panels

Ion GeneStudio[™] S5 System

Deliver PGT-A and more with a flexible NGS system for reproductive health

24

© 2024 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. For Research Use Only. Not for use in diagnostic procedures. Image property of Thermo Fisher Scientific. Please add our trademark statement: © 2024 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified.

