
Polygenic Risk Scoring in the Human Embryo

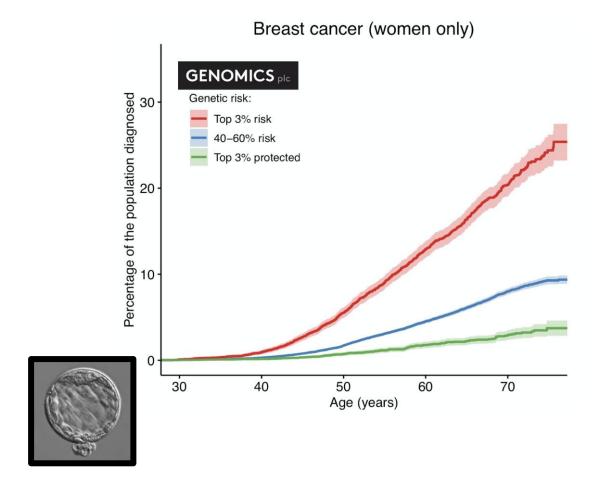
Diego Marin, PhD, HCLD(ABB)

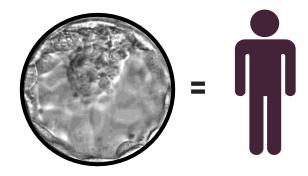
Deputy Laboratory Director
Head of Global Business Development & Scientific Affairs
Genomic Prediction

Adjunct Professor Department of Human Genetics **Rutgers University**

Disclosure

Full-time employee at Genomic Prediction, a PGT service provider (including "PGT-P")


Concept and Clinical Utility


PRS in PGT

Challenges

Future Applications

Polygenic Risk Scores

99.7% Genotyping Accuracy

Treff et al. **EJMG** 2019

The Economist Bhattacharya 2018, and the UK BioBank

Example of a "PGT-P" Report

Euploid embryos

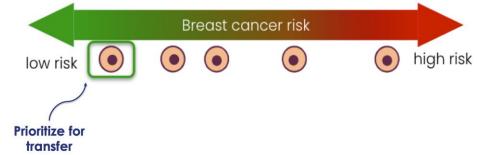
#	PGT-A	Sex	
7	46,XX	female	
9	46,XX	female	
3	46,XY	male	
10	46,XY	male	
4	46,XX	female	
1	46,XY	male	
8	46,XY 46,XX	male female	
3			_
8	46,XX	female	-
8	46,XX 46,XX	female female	-

Aneuploid embryos

#	PGT-A	Sex	
2	45,XY,-10	male	
12	47,XY,+22	male	

Embryo #4

Euploid Female


Absolute Risk

	V Risk	Avg Risk	Ratio	Risk Percentile
Type 1 Diabetes	0.59%	0.70%	0.84x	45
Type 2 Diabetes	19.17%	32.07%	0.6x	5
Breast Cancer	16.34%	10.43%	1.57x	95
Basal Cell Carcinoma	29.65%	27.00%	1.1x	75
Malignant Melanoma	1.86%	2.10%	0.89x	35
Heart Attack	12.11%	15.87%	0.76x	16
Atrial Fibirillation	21.30%	26.70%	0.8x	30
Coronary Artery Disease	23.15%	31.70%	0.73x	17
Inflammatory Bowel Disease	2.34%	1.44%	1.62x	88
Asthma	10.73%	5.00%	2.15x	97
Schizophrenia	0.69%	1.13%	0.61x	33

Clinical Utility of PGT-P

Tool to prioritize transfer of euploid embryos

A PGT-P is not intended to discard embryos

 PGT-P is not intended to select for cosmetic traits (but it is technically possible 1).

Patients with family history

~1.5% of all IVF couples are already affected with T1D

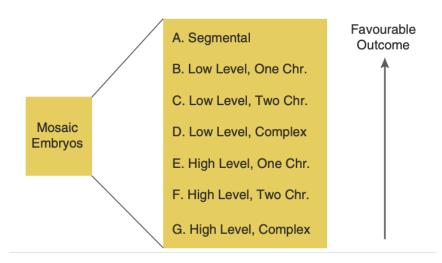
Fertility treatment and childhood type 1 diabetes mellitus: a nationwide cohort study of 565,116 live births

Laura Ozer Kettner, M.D., ^a Niels Bjerregaard Matthiesen, Ph.D., ^a Cecilia Høst Ramlau-Hansen, Ph.D., ^b Ulrik Schiøler Kesmodel, Ph.D., ^c Bjørn Bay, Ph.D., ^d and Tine Brink Henriksen, Ph.D. ^a

Type I diabetes in children born after assisted reproductive technology: a register-based national cohort study

E. Norrman^{1,*}, M. Petzold², T.D. Clausen³, A-K. Henningsen⁴, S. Opdahl⁵, A. Pinborg⁴, A. Rosengren⁶, C. Bergh^{7,†}, and U-B. Wennerholm^{1,†}

Example Case with a Child Affected with TID


Challenges of PRS in the Preimplantation Embryo

"PGT-P" is too complicated for patients...

Mosaicism

Using outcome data from one thousand mosaic embryo transfers to formulate an embryo ranking system for clinical use

Manuel Viotti, Ph.D., ^{a,b} Andrea R. Victor, M.S., ^a Frank L. Barnes, Ph.D., ^{a,b} Christo G. Zouves, M.D., ^{a,b} Andria G. Besser, M.S., ^c James A. Grifo, M.D., Ph.D., ^c En-Hui Cheng, Ph.D., ^d Maw-Sheng Lee, M.D., Ph.D., ^d Jose A. Horcajadas, Ph.D., ^f Laura Corti, M.Sc., ^g Francesco Fiorentino, Ph.D., ^h Francesca Spinella, Ph.D., ^h Maria Giulia Minasi, M.Sc., ^{ij} Ermanno Greco, M.D., ^{ij} and Santiago Munné, Ph.D.

PGT-M example

Euploid Embryos

#	Cycle Number	Grade *	PGT-A	CFTR: c.350G>A	CFTR: 5T	CFTR: c.249IG>T	CFTR: Interpretation	BRCA1: Deletion of exons 1-2	BRCA1: Interpretation	Sex
1	23472	6AA	46,XY	Negative	Heterozygous- Positive	Heterozygous- Positive	Compound Heterozygous	Negative	Negative	male
2	23472	6AA	46,XY	Heterozygous- Positive	Heterozygous- Positive	Negative	Compound Heterozygous	Heterozygous- Positive	Heterozygous Positive	male
3	23472	6AA	46,XY	Negative	Heterozygous- Positive	Heterozygous- Positive	Compound Heterozygous	Negative	Negative	male
4	23472	5AB	46,XY	Heterozygous- Positive	Negative	Heterozygous- Positive	Compound Heterozygous	Negative	Negative	male
5	23472	4AB	46,XY	Heterozygous- Positive	Heterozygous- Positive	Negative	Compound Heterozygous	Heterozygous- Positive	Heterozygous Positive	male
6	23472	4AA	46,XY	Heterozygous- Positive	Negative	Heterozygous- Positive	Compound Heterozygous	Negative	Negative	male
8	23472	ЗВА	46,XY	Negative	Homozygous- Positive	Negative	Homozygous Positive	Heterozygous- Positive	Heterozygous Positive	male
9	23472	5BB	46,XX	Heterozygous- Positive	Heterozygous- Positive	Negative	Compound Heterozygous	Heterozygous- Positive	Heterozygous ositived	female
10	23472	звс	46,XX	Negative	Heterozygous- Positive	Heterozygous- Positive	Compound Heterozygous	Heterozygous- Positive	Heterozygous Positive	female
11	23472	ЗАВ	46,XX	Heterozygous- Positive	Heterozygous- Positive	Negative	Compound Heterozygous	Negative	Negative	female
12	23472	6AB	46,XX	Negative	Homozygous- Positive	Negative	Homozygous Positive	Negative	Negative	female
14	23472	3BC	46,XX	Heterozygous- Positive	Heterozygous- Positive	Negative	Compound Heterozygous	Heterozygous- Positive	Heterozygous Positive	female

Aneuploid Embryos

#	Cycle Number	Grade *	PGT-A	CFTR: c.350G>A	CFTR: 5T	CFTR: c.249IG>T	CFTR: Interpretation	BRCAI: Deletion of exons 1-2	BRCA1: Interpretation	Sex
7	23472	4AA	47,XX,+14	Heterozygous- Positive	Heterozygous- Positive	Negative	Compound Heterozygous	Heterozygous- Positive	Heterozygous Positive	female
13	23472	6BC	44,XY,-15,-20	Negative	Homozygous- Positive	Negative	Homozygous Positive	Negative	Negative	male
15	23472	6CB	45,XX,-22	Heterozygous- Positive	Heterozygous- Positive	Negative	Compound Heterozygous	Heterozygous- Positive	Heterozygous Positive	female

Social and Racial Disparities

PGT-P Panel: Caucasian

Patient (or egg donor) self-reported ancestry: Caucasian(Non-Hispanic)
Partner (or sperm donor) self-reported ancestry: Caucasian(Non-Hispanic)

Euploid Embryos

#	PGT-A	Sex	Embryo Health Score
7	46,XX	female	0.77
9	46,XX	female	0.73
3	46,XY	male	0.7
10	46,XY	male	0.69
4	46,XX	female	0.33
1	46,XY	male	0.09
8	46,XX	female	0.08
11	46,XX	female	-0.11
6	46,XX	female	-0.22
5	46,XY	male	-1.19

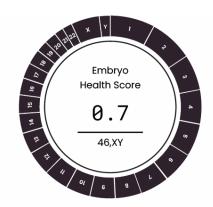
Aneuploid Embryos

#	PGT-A	Sex	Embryo Health Score
2	45,XY,-10	male	-
12	47,XY,+22	male	-

PGT-P panel: Hispanic/Native American Patient (or egg donor) self-reported ancestry: Caucasian(Hispanic)
Partner (or sperm donor) self-reported ancestry: Caucasian(Hispanic)

Euploid embryos

#	PGT-A	Sex	Health Score
6	46,XY	male	2.21
3	46,XX	female	1.74
7	46,XY	male	-0.08
9	46,XX	female	-1.47

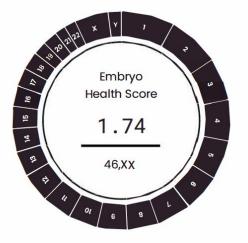

Aneuploid embryos

#	PGT-A	Sex	Health Score
4	45,XX,-22	female	-
5	45,XX,+13	female	Ψ
75			

Patient (or egg donor) self-reported ancestry: Caucasian(Non-Hispanic)
Partner (or sperm donor) self-reported ancestry: Caucasian(Non-Hispanic)

Embryo #3

Euploid Male



	Risk	Avg Risk	Ratio	Risk Percentile
Type 1 Diabetes	0.57%	0.70%	0.82x	42
Type 2 Diabetes	13.86%	30.57%	0.45x	1
Testicular Cancer	0.54%	0.52%	1.03x	64
Prostate Cancer	14.37%	14.27%	1.01x	57
Basal Cell Carcinoma	26.43%	26.00%	1.02x	56
Malignant Melanoma	2.57%	2.60%	0.99x	52
Heart Attack	11.26%	14.90%	0.76x	16
Atrial Fibrillation	41.43%	29.70%	1.4x	88
Coronary Artery Disease	35.61%	43.30%	0.82x	23
Inflammatory Bowel Disease	1.73%	1.44%	1.2x	72
Asthma	8.02%	5.00%	1.6x	90
Schizophrenia	1.00%	1.31%	0.76x	45

PGT-P panel: Hispanic/Native American Patient (or egg donor) self-reported ancestry: Caucasian(Hispanic)
Partner (or sperm donor) self-reported ancestry: Caucasian(Hispanic)

Embryo #3

Euploid Female

	Risk	Avg Risk	Ratio	Risk Percentile
Type 2 Diabetes	26.70%	46.19%	0.58x	11
Asthma	4.54%	5.00%	0.91x	44

Social and Racial Disparities

NIH awards \$38 million to improve utility of polygenic risk scores in diverse populations

"The first "PGT-P" baby was born in 2020... how do you know this technology works if she is just 5?"

scientific reports

scientific reports

OPEN Polygenic Health Index, General Health, and Pleiotropy: Sibling **Analysis and Disease Risk** Reduction

> Erik Widen^{1,2™}, Louis Lello^{1,2™}, Timothy G. Raben¹, Laurent C. A. M. Tellier^{1,2} & Stephen D. H. Hsu^{1,2}

OPEN Sibling variation in polygenic traits and DNA recombination mapping with UK Biobank and IVF family data

Check for updates

Louis Lello^{1,2⊠}, Maximus Hsu¹, Erik Widen^{1,2} & Timothy G. Raben²

Future Applications

Turning stem cells into human eggs

https://conception.bio/

If approved clinically, envision working with existing IVF clinics on this

- IVF clinics would take blood or skin samples from patients and send them to us – we would make eggs and/or embryos to send back
- Implantation procedures would occur as normal with IVF
- Could potentially enable much wider use of PGT-P given could create an higher number of eggs

Pablo Hurtado, Co-founder & CSO. PCRS 2025

¡Gracias!

diego@genomicprediction.com

